研究生: |
顧安琪 Ku, An-Chi |
---|---|
論文名稱: |
氧化壓力在A群鏈球菌感染中扮演的角色 The roles of oxidative stress in group A streptococcal infection |
指導教授: |
劉清泉
Liu, Ching-Chuan |
學位類別: |
碩士 Master |
系所名稱: |
醫學院 - 微生物及免疫學研究所 Department of Microbiology & Immunology |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 英文 |
論文頁數: | 55 |
中文關鍵詞: | A群鏈球菌 、活性氧化物質 、氧化壓力 、NADPH氧化酶 、硫氧還蛋白 、環氧合酶-2 、右旋美沙酚 、夾竹桃麻素 、NF-κB 、細胞內黏附分子 、血管細胞黏附分子 、誘導型一氧化氮酶 |
外文關鍵詞: | Group A Streptococcus, Streptococcus pyogenes, ROS, oxidative stress, NOX, thioredoxin, COX-2, DM, APO, NF-κB, ICAM, VCAM, iNOS |
相關次數: | 點閱:259 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
A群鏈球菌(Group A Streptococcus, Streptococcus pyogenes)是人類致病的重要病原菌之一,可導致危及生命的侵襲性疾病,包括壞死性筋膜炎和鏈球菌毒性休克症候群(streptococcal toxic shock syndrome)。活性氧化物質(reactive oxygen species)在抵禦外來病菌中扮演重要調控功能。細胞中活性氧化物質的生成來源之一為NADPH氧化酶(NADPH oxidase),除了宿主防禦的角色外,也參與在細胞訊息傳遞以及基因表現的調控中。然而,過量的活性氧化物質對細胞有害,由活性氧化物質引起的氧化壓力已被報導與許多生理功能失調及疾病相關。在本研究中,我們探討了氧化壓力與A群鏈球菌疾病嚴重程度之間的相關性,並探討抗氧化劑對嚴重A群鏈球菌感染的保護作用。在我們臨床病人檢體檢測結果顯示,非侵襲性和侵襲性症狀GAS患者血清中,硫氧還蛋白(thioredoxin)含量明顯高於健康對照組。並在A群鏈球菌感染引起的壞死性筋膜炎患者組織切片發現環氧合酶-2(cyclooxygenase-2)在血管中表現。這些結果顯示氧化壓力與A群鏈球菌疾病的嚴重程度具相關性。我們進一步利用細胞模式研究A群鏈球菌感染所誘導的氧化壓力在內皮細胞中扮演的角色。實驗發現,在A群鏈球菌感染下引起了大量的活性氧化物質產生進而誘導NF-κB活化。另一方面,A群鏈球菌感染會誘導HMEC-1細胞中環氧合酶-2(cyclooxygenase-2)的表現量增加。在感染前加入夾竹桃麻素(apocynin)、右旋美沙酚(dextromethorphan)和重組硫氧還蛋白(thioredoxin)可顯著減弱A群鏈球菌感染細胞中活性氧化物質的產生並抑制NF-κB活化。此外,在這些抗氧化劑處理後,A群鏈球菌感染誘導的內皮活化指標細胞內黏附分子(ICAM)、血管細胞黏附分子(VCAM)和誘導型一氧化氮酶(iNOS)的表現量降低。而在重組硫氧還蛋白(thioredoxin)作用下,可抑制感染細胞中環氧合酶-2(cyclooxygenase-2)的表現。總結而言,在細胞實驗中發現夾竹桃麻素(apocynin)、右旋美沙酚(dextromethorphan)和重組硫氧還蛋白(thioredoxin)可在GAS感染中作為抗發炎調節劑。
Group A Streptococcus (GAS), as known as Streptococcus pyogenes, is an important human pathogen that leads to life-threatening invasive diseases, including necrotizing fasciitis and streptococcal toxic shock syndrome (STSS). Oxygen-derived free radicals, collectively termed reactive oxygen species (ROS), play important roles in host defenses. The key producers of ROS in cells are the family of NADPH oxidases (NOX), which could regulate host defense, cellular signaling and gene expression. However, excess ROS are lethal to cells. ROS-mediated stress has been implicated in various dysfunctions and diseases. In this study, correlation between oxidative stress and severity of GAS disease and the protective role of antioxidant against severe GAS infections were explored. Clinical results showed that serum levels of thioredxoin (Trx) in GAS patients including non-invasive and invasive symptoms were significantly higher than the healthy control. Tissue sections from GAS infected-patients with necrotizing fasciitis revealed that cyclooxygenase-2 (COX-2) expressed in vascular. These results suggested that oxidative stress was associated with severity of GAS disease. We further studied the roles of GAS infection-induced oxidative stress in vitro, GAS infection effectively caused abundant ROS production followed by NF-κB activation. On the other hand, GAS infection induced increased expression of COX-2. Treatments with apocynin (APO), dextromethorphan (DM) and recombinant Trx notably attenuated ROS production in GAS-infected cells and inhibited NF-κB activation. Furthermore, the expression of endothelial activation marker and iNOS decreased after these anti-oxidant treatments. Recombinant Trx also attenuated the expression of COX-2 in GAS infected-cells. Taken together, NOX inhibitor, DM and trx could inhibit the oxidative stress in GAS-infected cells and reduce the inflammation to serve as anti-inflammatory modulators.
1. Stevens DL. 2000. Streptococcal toxic shock syndrome associated with necrotizing fasciitis. Annu Rev Med 51:271-288.
2. Bisno AL, Brito MO, Collins CM. 2003. Molecular basis of group A streptococcal virulence. Lancet Infect Dis 3:191-200.
3. Cleary PP. 2006. Streptococcus moves inward. Nat Med 12:384-386.
4. Henningham A, Barnett TC, Maamary PG, Walker MJ. 2012. Pathogenesis of group A streptococcal infections. Discov Med 13:329-342.
5. Tsatsaronis JA, Walker MJ, Sanderson-Smith ML. 2014. Host responses to group a streptococcus: cell death and inflammation. PLoS Pathog 10:e1004266.
6. Kwinn LA, Nizet V. 2007. How group A Streptococcus circumvents host phagocyte defenses. Future Microbiol 2:75-84.
7. Saetre T, Hoiby EA, Aspelin T, Lermark G, Egeland T, Lyberg T. 2000. Aminoethyl-isothiourea, a nitric oxide synthase inhibitor and oxygen radical scavenger, improves survival and counteracts hemodynamic deterioration in a porcine model of streptococcal shock. Crit Care Med 28:2697-2706.
8. Sriskandan S, Moyes D, Buttery LK, Wilkinson J, Evans TJ, Polak J, Cohen J. 1997. The role of nitric oxide in experimental murine sepsis due to pyrogenic exotoxin A-producing Streptococcus pyogenes. Infect Immun 65:1767-1772.
9. Norrby-Teglund A, Chatellier S, Low DE, McGeer A, Green K, Kotb M. 2000. Host variation in cytokine responses to superantigens determine the severity of invasive group A streptococcal infection. Eur J Immunol 30:3247-3255.
10. Pahlman LI, Olin AI, Darenberg J, Morgelin M, Kotb M, Herwald H, Norrby-Teglund A. 2008. Soluble M1 protein of Streptococcus pyogenes triggers potent T cell activation. Cell Microbiol 10:404-414.
11. Wang SM, Lu IH, Lin YL, Lin YS, Wu JJ, Chuang WJ, Lin MT, Liu CC. 2008. The severity of Streptococcus pyogenes infections in children is significantly associated with plasma levels of inflammatory cytokines. Diagn Microbiol Infect Dis 61:165-169.
12. Lu SL, Kawabata T, Cheng YL, Omori H, Hamasaki M, Kusaba T, Iwamoto R, Arimoto H, Noda T, Lin YS, Yoshimori T. 2017. Endothelial cells are intrinsically defective in xenophagy of Streptococcus pyogenes. PLoS Pathog 13:e1006444.
13. Novotny NM, Lahm T, Markel TA, Crisostomo PR, Wang M, Wang Y, Tan J, Meldrum DR. 2009. Angiopoietin-1 in the treatment of ischemia and sepsis. Shock 31:335-341.
14. Bryant AE, Bayer CR, Chen RY, Guth PH, Wallace RJ, Stevens DL. 2005. Vascular dysfunction and ischemic destruction of tissue in Streptococcus pyogenes infection: the role of streptolysin O-induced platelet/neutrophil complexes. J Infect Dis 192:1014-1022.
15. Shannon O, Hertzen E, Norrby-Teglund A, Morgelin M, Sjobring U, Bjorck L. 2007. Severe streptococcal infection is associated with M protein-induced platelet activation and thrombus formation. Mol Microbiol 65:1147-1157.
16. Sun GY, Horrocks LA, Farooqui AA. 2007. The roles of NADPH oxidase and phospholipases A2 in oxidative and inflammatory responses in neurodegenerative diseases. J Neurochem 103:1-16.
17. Henningham A, Dohrmann S, Nizet V, Cole JN. 2015. Mechanisms of group A Streptococcus resistance to reactive oxygen species. FEMS Microbiol Rev 39:488-508.
18. Aikawa C, Nozawa T, Maruyama F, Tsumoto K, Hamada S, Nakagawa I. 2010. Reactive oxygen species induced by Streptococcus pyogenes invasion trigger apoptotic cell death in infected epithelial cells. Cell Microbiol 12:814-830.
19. Stadtman ER, Berlett BS. 1998. Reactive oxygen-mediated protein oxidation in aging and disease. Drug Metab Rev 30:225-243.
20. Butterfield DA, Kanski J. 2001. Brain protein oxidation in age-related neurodegenerative disorders that are associated with aggregated proteins. Mech Ageing Dev 122:945-962.
21. Ivanov AV, Bartosch B, Isaguliants MG. 2017. Oxidative Stress in Infection and Consequent Disease. Oxid Med Cell Longev 2017:3496043.
22. Chaturvedi R, Asim M, Romero-Gallo J, Barry DP, Hoge S, de Sablet T, Delgado AG, Wroblewski LE, Piazuelo MB, Yan F, Israel DA, Casero RA, Jr., Correa P, Gobert AP, Polk DB, Peek RM, Jr., Wilson KT. 2011. Spermine oxidase mediates the gastric cancer risk associated with Helicobacter pylori CagA. Gastroenterology 141:1696-1708.e1691-1692.
23. Zahlten J, Kim YJ, Doehn JM, Pribyl T, Hocke AC, Garcia P, Hammerschmidt S, Suttorp N, Hippenstiel S, Hubner RH. 2015. Streptococcus pneumoniae-Induced Oxidative Stress in Lung Epithelial Cells Depends on Pneumococcal Autolysis and Is Reversible by Resveratrol. J Infect Dis 211:1822-1830.
24. Hulsmans M, Holvoet P. 2010. The vicious circle between oxidative stress and inflammation in atherosclerosis. J Cell Mol Med 14:70-78.
25. Madamanchi NR, Hakim ZS, Runge MS. 2005. Oxidative stress in atherogenesis and arterial thrombosis: the disconnect between cellular studies and clinical outcomes. J Thromb Haemost 3:254-267.
26. Ogita H, Liao J. 2004. Endothelial function and oxidative stress. Endothelium 11:123-132.
27. Tsai PJ, Chen YH, Hsueh CH, Hsieh HC, Liu YH, Wu JJ, Tsou CC. 2006. Streptococcus pyogenes induces epithelial inflammatory responses through NF-kappaB/MAPK signaling pathways. Microbes Infect 8:1440-1449.
28. Kanneganti TD, Ozoren N, Body-Malapel M, Amer A, Park JH, Franchi L, Whitfield J, Barchet W, Colonna M, Vandenabeele P, Bertin J, Coyle A, Grant EP, Akira S, Nunez G. 2006. Bacterial RNA and small antiviral compounds activate caspase-1 through cryopyrin/Nalp3. Nature 440:233-236.
29. Guglielmetti S, Taverniti V, Minuzzo M, Arioli S, Zanoni I, Stuknyte M, Granucci F, Karp M, Mora D. 2010. A dairy bacterium displays in vitro probiotic properties for the pharyngeal mucosa by antagonizing group A streptococci and modulating the immune response. Infect Immun 78:4734-4743.
30. Liu CW, Lee TL, Chen YC, Liang CJ, Wang SH, Lue JH, Tsai JS, Lee SW, Chen SH, Yang YF, Chuang TY, Chen YL. 2018. PM2.5-induced oxidative stress increases intercellular adhesion molecule-1 expression in lung epithelial cells through the IL-6/AKT/STAT3/NF-kappaB-dependent pathway. Part Fibre Toxicol 15:4.
31. Santovito D, Mezzetti A, Cipollone F. 2009. Cyclooxygenase and prostaglandin synthases: roles in plaque stability and instability in humans. Curr Opin Lipidol 20:402-408.
32. Hinz B, Brune K. 2002. Cyclooxygenase-2--10 years later. J Pharmacol Exp Ther 300:367-375.
33. Munoz M, Sanchez A, Pilar Martinez M, Benedito S, Lopez-Oliva ME, Garcia-Sacristan A, Hernandez M, Prieto D. 2015. COX-2 is involved in vascular oxidative stress and endothelial dysfunction of renal interlobar arteries from obese Zucker rats. Free Radic Biol Med 84:77-90.
34. Tian XY, Wong WT, Leung FP, Zhang Y, Wang YX, Lee HK, Ng CF, Chen ZY, Yao X, Au CL, Lau CW, Vanhoutte PM, Cooke JP, Huang Y. 2012. Oxidative stress-dependent cyclooxygenase-2-derived prostaglandin f(2alpha) impairs endothelial function in renovascular hypertensive rats. Antioxid Redox Signal 16:363-373.
35. Virdis A, Colucci R, Fornai M, Blandizzi C, Duranti E, Pinto S, Bernardini N, Segnani C, Antonioli L, Taddei S, Salvetti A, Del Tacca M. 2005. Cyclooxygenase-2 inhibition improves vascular endothelial dysfunction in a rat model of endotoxic shock: role of inducible nitric-oxide synthase and oxidative stress. J Pharmacol Exp Ther 312:945-953.
36. Panday A, Sahoo MK, Osorio D, Batra S. 2015. NADPH oxidases: an overview from structure to innate immunity-associated pathologies. Cell Mol Immunol 12:5-23.
37. Soares EM, Mason KL, Rogers LM, Serezani CH, Faccioli LH, Aronoff DM. 2013. Leukotriene B4 enhances innate immune defense against the puerperal sepsis agent Streptococcus pyogenes. J Immunol 190:1614-1622.
38. Goldmann O, von Kockritz-Blickwede M, Holtje C, Chhatwal GS, Geffers R, Medina E. 2007. Transcriptome analysis of murine macrophages in response to infection with Streptococcus pyogenes reveals an unusual activation program. Infect Immun 75:4148-4157.
39. Bedard K, Krause KH. 2007. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87:245-313.
40. Montezano AC, Touyz RM. 2012. Reactive oxygen species and endothelial function--role of nitric oxide synthase uncoupling and Nox family nicotinamide adenine dinucleotide phosphate oxidases. Basic Clin Pharmacol Toxicol 110:87-94.
41. Drummond GR, Sobey CG. 2014. Endothelial NADPH oxidases: which NOX to target in vascular disease? Trends Endocrinol Metab 25:452-463.
42. Drummond GR, Selemidis S, Griendling KK, Sobey CG. 2011. Combating oxidative stress in vascular disease: NADPH oxidases as therapeutic targets. Nat Rev Drug Discov 10:453-471.
43. Stolk J, Hiltermann TJ, Dijkman JH, Verhoeven AJ. 1994. Characteristics of the inhibition of NADPH oxidase activation in neutrophils by apocynin, a methoxy-substituted catechol. Am J Respir Cell Mol Biol 11:95-102.
44. t Hart BA, Simons JM, Knaan-Shanzer S, Bakker NP, Labadie RP. 1990. Antiarthritic activity of the newly developed neutrophil oxidative burst antagonist apocynin. Free Radic Biol Med 9:127-131.
45. Stuehr DJ, Fasehun OA, Kwon NS, Gross SS, Gonzalez JA, Levi R, Nathan CF. 1991. Inhibition of macrophage and endothelial cell nitric oxide synthase by diphenyleneiodonium and its analogs. Faseb j 5:98-103.
46. Gatley SJ, Sherratt HS. 1976. The effects of diphenyleneiodonium and of 2,4-dichlorodiphenyleneiodonium on mitochondrial reactions. Mechanism of the inhibition of oxygen uptake as a consequence of the catalysis of the chloride/hydroxyl-ion exchange. Biochem J 158:317-326.
47. Lee S, Kim SM, Lee RT. 2013. Thioredoxin and thioredoxin target proteins: from molecular mechanisms to functional significance. Antioxid Redox Signal 18:1165-1207.
48. Holmgren A, Bjornstedt M. 1995. Thioredoxin and thioredoxin reductase. Methods Enzymol 252:199-208.
49. Nakamura H, Hoshino Y, Okuyama H, Matsuo Y, Yodoi J. 2009. Thioredoxin 1 delivery as new therapeutics. Adv Drug Deliv Rev 61:303-309.
50. Mahmood DF, Abderrazak A, El Hadri K, Simmet T, Rouis M. 2013. The thioredoxin system as a therapeutic target in human health and disease. Antioxid Redox Signal 19:1266-1303.
51. Chen B, Meng L, Shen T, Gong H, Qi R, Zhao Y, Sun J, Bao L, Zhao G. 2017. Thioredoxin attenuates oxidized low-density lipoprotein induced oxidative stress in human umbilical vein endothelial cells by reducing NADPH oxidase activity. Biochem Biophys Res Commun 490:1326-1333.
52. Chen G, Li X, Huang M, Li M, Zhou X, Li Y, Bai J. 2016. Thioredoxin-1 Increases Survival in Sepsis by Inflammatory Response Through Suppressing Endoplasmic Reticulum Stress. Shock 46:67-74.
53. Yashiro M, Tsukahara H, Matsukawa A, Yamada M, Fujii Y, Nagaoka Y, Tsuge M, Yamashita N, Ito T, Yamada M, Masutani H, Yodoi J, Morishima T. 2013. Redox-active protein thioredoxin-1 administration ameliorates influenza A virus (H1N1)-induced acute lung injury in mice. Crit Care Med 41:171-181.
54. Leaver SK, MacCallum NS, Pingle V, Hacking MB, Quinlan GJ, Evans TW, Burke-Gaffney A. 2010. Increased plasma thioredoxin levels in patients with sepsis: positive association with macrophage migration inhibitory factor. Intensive Care Med 36:336-341.
55. Eriksson J, Gidlof A, Eriksson M, Larsson E, Brattstrom O, Oldner A. 2017. Thioredoxin a novel biomarker of post-injury sepsis. Free Radic Biol Med 104:138-143.
56. Bem JL, Peck R. 1992. Dextromethorphan. An overview of safety issues. Drug Saf 7:190-199.
57. Choi DW. 1987. Dextrorphan and dextromethorphan attenuate glutamate neurotoxicity. Brain Res 403:333-336.
58. Liu Y, Qin L, Li G, Zhang W, An L, Liu B, Hong JS. 2003. Dextromethorphan protects dopaminergic neurons against inflammation-mediated degeneration through inhibition of microglial activation. J Pharmacol Exp Ther 305:212-218.
59. Liu PY, Lin CC, Tsai WC, Li YH, Lin LJ, Shi GY, Hong JS, Chen JH, Wu HL. 2008. Treatment with dextromethorphan improves endothelial function, inflammation and oxidative stress in male heavy smokers. J Thromb Haemost 6:1685-1692.
60. Li G, Liu Y, Tzeng NS, Cui G, Block ML, Wilson B, Qin L, Wang T, Liu B, Liu J, Hong JS. 2005. Protective effect of dextromethorphan against endotoxic shock in mice. Biochem Pharmacol 69:233-240.
61. Li MH, Luo YH, Lin CF, Chang YT, Lu SL, Kuo CF, Hong JS, Lin YS. 2011. Dextromethorphan efficiently increases bactericidal activity, attenuates inflammatory responses, and prevents group a streptococcal sepsis. Antimicrob Agents Chemother 55:967-973.
62. Lassegue B, Griendling KK. 2010. NADPH oxidases: functions and pathologies in the vasculature. Arterioscler Thromb Vasc Biol 30:653-661.
63. Liu SL, Li YH, Shi GY, Tang SH, Jiang SJ, Huang CW, Liu PY, Hong JS, Wu HL. 2009. Dextromethorphan reduces oxidative stress and inhibits atherosclerosis and neointima formation in mice. Cardiovasc Res 82:161-169.
64. Chen CL, Cheng MH, Kuo CF, Cheng YL, Li MH, Chang CP, Wu JJ, Anderson R, Wang S, Tsai PJ, Liu CC, Lin YS. 2018. Dextromethorphan Attenuates NADPH Oxidase-Regulated Glycogen Synthase Kinase 3beta and NF-kappaB Activation and Reduces Nitric Oxide Production in Group A Streptococcal Infection. Antimicrob Agents Chemother 62.
65. Lee WL, Liles WC. 2011. Endothelial activation, dysfunction and permeability during severe infections. Curr Opin Hematol 18:191-196.
66. Ferrer MD, Sureda A, Batle JM, Tauler P, Tur JA, Pons A. 2007. Scuba diving enhances endogenous antioxidant defenses in lymphocytes and neutrophils. Free Radic Res 41:274-281.
67. Cheng W, Li Y, Hou X, Bai B, Li F, Ding F, Ma J, Zhang N, Shen Y, Wang Y. 2015. Determining the neuroprotective effects of dextromethorphan in lipopolysaccharidestimulated BV2 microglia. Mol Med Rep 11:1132-1138.
68. Burke-Gaffney A, Callister ME, Nakamura H. 2005. Thioredoxin: friend or foe in human disease? Trends Pharmacol Sci 26:398-404.
69. Morgan MJ, Liu ZG. 2011. Crosstalk of reactive oxygen species and NF-kappaB signaling. Cell Res 21:103-115.
70. Ksiazek K, Mikula-Pietrasik J, Catar R, Dworacki G, Winckiewicz M, Frydrychowicz M, Dragun D, Staniszewski R, Jorres A, Witowski J. 2010. Oxidative stress-dependent increase in ICAM-1 expression promotes adhesion of colorectal and pancreatic cancers to the senescent peritoneal mesothelium. Int J Cancer 127:293-303.
71. Saetre T, Kahler H, Foster SJ, Lyberg T. 2001. Aminoethyl-isothiourea inhibits leukocyte production of reactive oxygen species and proinflammatory cytokines induced by streptococcal cell wall components in human whole blood. Shock 15:455-460.
72. Kishimoto C, Shioji K, Nakamura H, Nakayama Y, Yodoi J, Sasayama S. 2001. Serum thioredoxin (TRX) levels in patients with heart failure. Jpn Circ J 65:491-494.
73. Miwa K, Kishimoto C, Nakamura H, Makita T, Ishii K, Okuda N, Taniguchi A, Shioji K, Yodoi J, Sasayama S. 2003. Increased oxidative stress with elevated serum thioredoxin level in patients with coronary spastic angina. Clin Cardiol 26:177-181.
74. Shan W, Zhong W, Zhao R, Oberley TD. 2010. Thioredoxin 1 as a subcellular biomarker of redox imbalance in human prostate cancer progression. Free Radic Biol Med 49:2078-2087.
75. Li J, Cheng ZJ, Liu Y, Yan ZL, Wang K, Wu D, Wan XY, Xia Y, Lau WY, Wu MC, Shen F. 2015. Serum thioredoxin is a diagnostic marker for hepatocellular carcinoma. Oncotarget 6:9551-9563.
76. Jikimoto T, Nishikubo Y, Koshiba M, Kanagawa S, Morinobu S, Morinobu A, Saura R, Mizuno K, Kondo S, Toyokuni S, Nakamura H, Yodoi J, Kumagai S. 2002. Thioredoxin as a biomarker for oxidative stress in patients with rheumatoid arthritis. Mol Immunol 38:765-772.
77. Sumida Y, Nakashima T, Yoh T, Nakajima Y, Ishikawa H, Mitsuyoshi H, Sakamoto Y, Okanoue T, Kashima K, Nakamura H, Yodoi J. 2000. Serum thioredoxin levels as an indicator of oxidative stress in patients with hepatitis C virus infection. J Hepatol 33:616-622.
78. Fujii S, Nanbu Y, Konishi I, Mori T, Masutani H, Yodoi J. 1991. Immunohistochemical localization of adult T-cell leukaemia-derived factor, a human thioredoxin homologue, in human fetal tissues. Virchows Arch A Pathol Anat Histopathol 419:317-326.
79. Nakamura H, Nakamura K, Yodoi J. 1997. Redox regulation of cellular activation. Annu Rev Immunol 15:351-369.
80. MASUTANI H, NAITO M, TAKAHASHI K, HATTORI T, KOITO A, TAKATSUKI K, GO T, NAKAMURA H, FUJII S, YOSHIDA Y, OKUMA M, YODOI J. 1992. Dysregulation of Adult T-Cell Leukemia-Derived Factor (ADF)/Thioredoxin in HIV Infection: Loss of ADF High-Producer Cells in Lymphoid Tissues of AIDS Patients. AIDS Research and Human Retroviruses 8:1707-1715.
81. Aillet F, Masutani H, Elbim C, Raoul H, Chene L, Nugeyre MT, Paya C, Barre-Sinoussi F, Gougerot-Pocidalo MA, Israel N. 1998. Human immunodeficiency virus induces a dual regulation of Bcl-2, resulting in persistent infection of CD4(+) T- or monocytic cell lines. J Virol 72:9698-9705.
82. Masutani H, Ueda S, Yodoi J. 2005. The thioredoxin system in retroviral infection and apoptosis. Cell Death Differ 12 Suppl 1:991-998.
83. Srivastav S, Basu Ball W, Gupta P, Giri J, Ukil A, Das PK. 2014. Leishmania donovani prevents oxidative burst-mediated apoptosis of host macrophages through selective induction of suppressors of cytokine signaling (SOCS) proteins. J Biol Chem 289:1092-1105.
84. Ray PD, Huang BW, Tsuji Y. 2012. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal 24:981-990.
85. Fan LM, Douglas G, Bendall JK, McNeill E, Crabtree MJ, Hale AB, Mai A, Li JM, McAteer MA, Schneider JE, Choudhury RP, Channon KM. 2014. Endothelial cell-specific reactive oxygen species production increases susceptibility to aortic dissection. Circulation 129:2661-2672.
86. Altenhofer S, Radermacher KA, Kleikers PW, Wingler K, Schmidt HH. 2015. Evolution of NADPH Oxidase Inhibitors: Selectivity and Mechanisms for Target Engagement. Antioxid Redox Signal 23:406-427.
87. Joseph LC, Kokkinaki D, Valenti MC, Kim GJ, Barca E, Tomar D, Hoffman NE, Subramanyam P, Colecraft HM, Hirano M, Ratner AJ, Madesh M, Drosatos K, Morrow JP. 2017. Inhibition of NADPH oxidase 2 (NOX2) prevents sepsis-induced cardiomyopathy by improving calcium handling and mitochondrial function. JCI Insight 2.
88. Yang HH, Hou CC, Lin MT, Chang CP. 2012. Attenuating heat-induced acute lung inflammation and injury by dextromethorphan in rats. Am J Respir Cell Mol Biol 46:407-413.
89. Chechneva OV, Mayrhofer F, Daugherty DJ, Pleasure DE, Hong JS, Deng W. 2011. Low dose dextromethorphan attenuates moderate experimental autoimmune encephalomyelitis by inhibiting NOX2 and reducing peripheral immune cells infiltration in the spinal cord. Neurobiol Dis 44:63-72.
90. Wilson RL, Selvaraju V, Lakshmanan R, Thirunavukkarasu M, Campbell J, McFadden DW, Maulik N. 2017. Thioredoxin-1 attenuates sepsis-induced cardiomyopathy after cecal ligation and puncture in mice. J Surg Res 220:68-78.
91. Cook-Johnson RJ, Demasi M, Cleland LG, Gamble JR, Saint DA, James MJ. 2006. Endothelial cell COX-2 expression and activity in hypoxia. Biochim Biophys Acta 1761:1443-1449.
92. Fernandez-Pisonero I, Duenas AI, Barreiro O, Montero O, Sanchez-Madrid F, Garcia-Rodriguez C. 2012. Lipopolysaccharide and sphingosine-1-phosphate cooperate to induce inflammatory molecules and leukocyte adhesion in endothelial cells. J Immunol 189:5402-5410.
93. Rydkina E, Sahni A, Baggs RB, Silverman DJ, Sahni SK. 2006. Infection of human endothelial cells with spotted Fever group rickettsiae stimulates cyclooxygenase 2 expression and release of vasoactive prostaglandins. Infect Immun 74:5067-5074.
94. Csiki I, Yanagisawa K, Haruki N, Nadaf S, Morrow JD, Johnson DH, Carbone DP. 2006. Thioredoxin-1 modulates transcription of cyclooxygenase-2 via hypoxia-inducible factor-1alpha in non-small cell lung cancer. Cancer Res 66:143-150.
95. Welsh SJ, Bellamy WT, Briehl MM, Powis G. 2002. The redox protein thioredoxin-1 (Trx-1) increases hypoxia-inducible factor 1alpha protein expression: Trx-1 overexpression results in increased vascular endothelial growth factor production and enhanced tumor angiogenesis. Cancer Res 62:5089-5095.