簡易檢索 / 詳目顯示

研究生: 張皓宇
Zhang, Hao-Yu
論文名稱: 液化地盤側潰現象之物理模型試驗技術與變位特性研究
A Study on the Physical Modelling of Lateral Spreading of Liquefied Ground and Its Displacement Characteristics
指導教授: 柯永彥
Ko, Yung-Yen
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 100
中文關鍵詞: 土壤液化側潰地盤變位縮尺物理模型試驗滲流引致液化
外文關鍵詞: soil liquefaction, lateral spreading, ground displacement, scaled physical modelling, seepage-induced liquefaction
相關次數: 點閱:80下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 地震發生時,土壤液化為常見之地工災害,此時土層因弱化而在地形屬緩坡或具自由面(如靠近水岸區域)之地盤容易造成側潰現象。本研究將透過縮尺物理模型,利用向上滲流機制引致土壤液化,來探討砂質地盤受液化影響而導致側潰之變位分布。試驗時,使用剛性試驗箱容納地盤試體,並於箱底設置注水系統,經一系列測試調整後,最終以變頻恆壓泵浦控制系統所需驅動壓力,透過均佈出水孔與濾層產生均勻向上滲流,藉此激發超額孔隙水壓並使砂土試體達液化。試驗聚焦於較常見之自由面側潰,製作不同情境下具自由面之地盤模型,包括自然河岸、重力式碼頭及背填土含非液化殼層之重力式碼頭等,藉以探討探討其側潰發展情況與變位特性。在自然河岸情境中,液化後土層上部產生明顯向下坡移動,亦造成了坡面角度變小,惟近坡面處之破壞較類似於流動破壞,使靠近地表處之變位較明顯;重力式碼頭情境中,地盤液化側潰後推動岸壁,並使牆體產生滑移、傾斜甚至傾倒;至於在重力式碼頭情境加入非液化殼層後,其對砂土層產生阻抗而導致側潰影響範圍較小。各模擬情境下地盤變位大致上呈現離自由面越遠或隨深度增加而降低之趨勢,且明顯受岸壁之破壞型態影響;側潰影響範圍則約為水際線地表位移之數倍,較歷史案例偏小,並以重力式碼頭岸壁發生傾覆破壞之情境較低,可能為較大的水際線地表位移所致。前述研究成果有助於增進對於土壤液化引致側潰特性之瞭解,並可供設計基樁等地下結構物時之參考。

    This study aimed to investigate the distribution of ground displacement due to liquefaction-induced lateral spreading utilizing scaled physical modelling with upward seepage mechanism to cause liquefaction. A rigid box with a water injection system at its bottom was used as the ground specimen container. After a series trials, the driving pressure was controlled by a constant-pressure pump to generate uniform upward seepage through distributed outlets and filter. The experiments focused on the free-face lateral spreading that is commonly encountered in practice. Different scenarios with a free face, including a riverbank, a gravity-type wharf, and a gravity-type wharf with a non-liquefied crust layer, were simulated to observe the development of lateral spreading and to characterize the associated displacement. In the riverbank scenario, significant downslope movement is observed in the upper part of the liquefied soil layer, causing a decrease in slope angle. In the gravity-type wharf scenario, the liquefied and laterally spreading ground pushed the retaining wall, causing sliding, tilting, and even overturning of the quay wall. When a crust layer was added to the gravity-type wharf scenario, it impeded the lateral spreading, resulting in a smaller affected area. In general, the observed displacement attenuated both with the distance to the free face and the depth and was significantly influenced by the failure pattern of quay wall. Findings of this study contribute to a better understanding of the characteristics of liquefaction-induced lateral spreading and may serve as the reference for the design of underground structures such as pile foundations.

    摘要 I Abstract II 誌謝 V 目錄 VI 表目錄 IX 圖目錄 X 第一章 緒論 1 1.1 研究背景及目的 1 1.2 研究方法與流程 2 1.3 論文架構 3 第二章 文獻回顧 5 2.1 土壤液化定義及成因 5 2.2 土壤液化引致之側潰 6 2.3 土壤液化側潰災害案例 8 2.4 土壤液化側潰引致地盤變位之簡化評估方法 10 2.5 土壤液化側潰之物理模型試驗 14 2.6 滲流引致土壤液化之原理及試驗應用 18 第三章 試驗方法 22 3.1 試驗概述 22 3.2 試驗設備—側潰模擬試驗箱 22 3.2.1 剛性試驗箱 22 3.2.2 注水系統 23 3.2.3 可移動式霣落器 25 3.3 試體準備 29 3.3.1 試驗用砂 29 3.3.2 地盤試體之相對密度控制 30 3.3.3 模擬情境及配置 32 3.4 量測配置與資料擷取系統 37 3.4.1 水壓計 37 3.4.2 模組化擷取系統 38 3.4.3 National Instruments LabVIEW軟體 38 3.4.4 地盤變位觀察方法 41 第四章 滲流引致液化機制之可行性驗證 43 4.1 小型試體測試 43 4.1.1 測試配置 43 4.1.2 試體準備 46 4.1.3 液化可行性驗證結果 46 4.2 側潰模擬試驗箱效能測試─水平地盤試體測試 47 4.2.1 測試配置 48 4.2.2 測試結果 49 第五章 試驗結果與地盤變位特性分析 53 5.1 自然河岸情境 53 5.1.1 液化側潰情況概述 53 5.1.2 地盤變位之特性─地表變位分布與影響範圍 56 5.1.3 地盤變位之特性─垂直變位剖面 57 5.2 重力式碼頭情境 61 5.2.1 液化側潰情況概述 62 5.2.2 地盤變位之特性─地表變位分布與影響範圍 64 5.2.3 地盤變位之特性─垂直變位剖面 67 5.2.4 牆體穩定性檢核 74 5.3 含殼層之重力式碼頭情境 77 5.3.1 液化側潰情況概述 77 5.3.2 地盤變位之特性─地盤變位分布與影響範圍 85 5.3.3 地盤變位之特性─垂直變位剖面 88 5.4 綜合比較與討論 92 第六章 結論與建議 94 6.1 結論 94 6.2 建議 95 參考文獻 97

    1. 王紫芳,液化砂土之滲透性試驗,國立台灣大學土木工程學系碩士論文,2014。
    2. 李崇正、洪汶宜、莊汶雅、魏雨辰、陳福勝、吳文隆、蔡立盛,「應用離心機試驗探討隧道承載土層液化行為」,中華技術,第93 期,165-177頁,2012。
    3. 李德河、古志生,「液化區 CPT 資料之探討」,土木水利工程學刊,第十三卷,第四期,第 779 -791 頁,2001。
    4. 林成川,921集集大地震霧峰地區土壤側潰,國立中興大學土木工程學系碩士論文,2002。
    5. 國家地震工程研究中心,0206地震災情彙整與實地調查報告,2016。
    6. 陳正興、陳家漢,「地震引致的土壤液化與側潰現象」,科學發展,第498 期,12-17頁,2014。
    7. 黃俊鴻、楊志文、譚志豪、陳正興,「集集地震土壤液化之調查與分析」,地工技術,第77期,51-64頁,2000。
    8. 廖冠傑,地工合成物加勁陡坡之耐震行為研究,國立成功大學土木工程學系碩士論文,2018。
    9. Bartlett, S.F., Youd, T.L., Empirical Analysis of Horizontal Ground Displacement Generated by Liquefaction-Induced Lateral Spreads, Technical Report NCEER-92-0021, 1992a.
    10. Bartlett, S.F., Youd, T.L., "Empirical prediction of lateral spread displacement." Proc., 4th Japan-U.S. Workshop on Earthquake Resistant Design of Lifeline Facilities and Countermeasures for Soil Liquefaction, Tech. Rep. NCEER-92-0019, M. Hamada and T. D. O'Rourke (eds.), August 12, pp. 351-365, 1992b.
    11. Casagrande, A. ,“Characteristics of cohesionless soils affecting the stability of slopes and earth fills”, Journal of the Boston Society of Civil Engineers, reprinted in Contributions to Soil Mechanics, Boston Society of Civil Engineers, 1940, pp.257-276, 1936.
    12. Cubrinovski, M., Bray, J. D., Taylor, M., Giorgini, S., Bradley, B., Wotherspoon, L., & Zupan, J., Soil liquefaction effects in the central business district during the February 2011 Christchurch earthquake. Seismological Research Letters, 82(6), 893-904, 2011.
    13. Cubrinovski, M., Robinson, K., “Lateral spreading: Evidence and interpretation from the 2010-2011 Christchurch earthquakes”, Soil Dynamics and Earthquake Engineering, 91, 187-201, 2016.
    14. Dobry, R., Abdoun, T.H. and O'Rourke, T. D., “Evaluation of Pile Response Due to Liquefaction-Induced Lateral Spreading of the Ground,” Proc. 4th Caltrans Seismic Research Workshop, Sacramento, CA, July, 10 pages, 1996.
    15. Dobry, R., Thevanayagam, S., Medina, C., Bethapudi, R., Elgamal, A., Bennett, V., Abdoun, T., Zeghal, M., El Shamy, U., Mercado, V.M., “Mechanics of lateral spreading observed in a full-scale shake test”, Journal of Geotechnical and Geoenvironmental Engineering, 137(2), 115-129, 2011.
    16. Fiegel, G. L., & Kutter, B. L., Liquefaction mechanism for layered soils. Journal of geotechnical engineering, 120(4), 737-755, 1994.
    17. Ghalandarzadeh, A., Orita, T., Towhata, I., & Yun, F., Shaking table tests on seismic deformation of gravity quay walls. Soils and foundations, 38(Special), 115-132, 1998.
    18. Hamada, M., “Large Ground Deformations and Their Effects on Lifelines: 1964 Niigata Earthquake”, in: Hamada, M., O'Rourke, T.D. (eds), Case Studies of Liquefaction and Lifeline Performance During Past Earthquakes, Vol. 1, Japanese Case Studies, Technical Report NCEER-92-0001, Chapter 3, 1992.
    19. Hamada, M., Towhata, I., Yasuda, S., Isoyama, R., “Study on permanent ground displacement induced by seismic liquefaction”, Computers and Geotechnics, 4(4), 197-220, 1987.
    20. Hazen, A., “Hydraulic Fill Dams”, Transactions of the American Society of Civil Engineers. 83: pp.1717-1745, 1920.
    21. Ishihara, K.,“Stability of natural deposits during earthquakes”, International conference on soil mechanics and foundation engineering Vol. 11, pp.321-376, 1985.
    22. Ishihara, K., Yoshida, K., Kato, M., “Characteristics of lateral spreading in liquefied deposits during the 1995 Hanshin - Awaji Earthquake”, Journal of Earthquake Engineering, 1(1), 23-55, 1997.
    23. Martin, G. R., Seed, H. B., & Finn, W. L., Fundamentals of liquefaction under cyclic loading. Journal of the Geotechnical Engineering Division, 101(5), 423-438, 1975.
    24. Matsuo, H., & Ohara, S., Lateral earth pressure and stability of quay walls during earthquakes. In Proceedings of the Second World Conference on Earthquake Engineering (Vol. 1, pp. 165-181). Science Council of Japan Tokyo-Kyoto, Japan, 1960.
    25. Motamed, R., Towhata, I., “Shaking table model tests on pile groups behind quay walls subjected to lateral spreading”, Journal of Geotechnical and Geoenvironmental Engineering, 136(3), 477-489, 2010.
    26. Motamed, R., Towhata, I., Honda, T., Tabata, K., Abe, A., Pile group response to liquefaction–induced lateral spreading: E–Defense large shake table test, Soil Dynamics and Earthquake Engineering, 51, 36-46, 2013.
    27. Ogawa, N., Ishihara, Y., Ono, K., Hamada, M., “A large model experiment on the effect of sheet pile wall reducing the damage of oil tank due to liquefaction”, 1st International Conference on Press-in Engineering, Kochi, 2018.
    28. O'Rourke, T. D., & Lane, P. A., Liquefaction hazards and their effects on buried pipelines, 1989.
    29. Portland Cement Association, Soil-cement laboratory handbook. Portland Cement Assoc,1956.
    30. Rauch, A. F., EPOLLS: an empirical method for prediciting surface displacements due to liquefaction-induced lateral spreading in earthquakes (Doctoral dissertation, Virginia Tech), 1997.
    31. Seed, H. B., Analysis of the slides in the San Fernando dams during the earthquake of Feb. 9, 1971 (Vol. 73, No. 2). College of Engineering, University of California, 1973.
    32. Seed, H. B., Lee, K. L., Idriss, I. M., & Makdisi, F. I., The slides in the San Fernando dams during the earthquake of February 9, 1971. Journal of the Geotechnical Engineering Division, 101(7), 651-688, 1975.
    33. Seed, H. B., Considerations in the earthquake-resistant design of earth and rockfill dams. Geotechnique, 29(3), 215-263, 1979.
    34. Seed, H. B., Seed, R. B., Harder, L. F., & Jong, H. L., Re-evaluation of the Lower San Fernando Dam: Report 2, examination of the post-earthquake slide of February 9, 1971. US Army Corps of Engineers Contract Report GL-89-2, US Army Corps of Engineers Waterways Experiment Station, Vicksburg, Mississippi, 1989.
    35. Tokimatsu, K., Mizuno, H., and Kakurai, M., “Building damage associated with geotechnical problems.” Soils and Foundations, 36, special issue, 219-234, 1996.
    36. Tokimatsu, K., Asaka, Y., “Effects of liquefaction-induced ground displacements on pile performance in the 1995 Hyogoken-Nambu earthquake”, Soil and Foundations, 38, special issue, 163-177, 1998.
    37. Towhata, I., Sasaki, Y., Tokida, K. I., Matsumoto, H., Tamar, Y., & Yamada, K., Prediction of permanent displacement of liquefied ground by means of minimum energy principle. Soils and Foundations, 32(3), 97-116, 1992.
    38. Ueng, T. S., Inference of behavior of saturated sandy soils during earthquakes from laboratory experiments. Journal of GeoEngineering, 1(1), 1-9, 2006.
    39. Ueng, T. S., Wang, Z. F., Chu, M. C., & Ge, L., Laboratory tests for permeability of sand during liquefaction. Soil Dynamics and Earthquake Engineering, 100, 249-256, 2017.
    40. Varnes, D. J., Slope movement types and processes. Special report, 176, 11-33, 1978.
    41. Yoshida, N., Tazoh, T. Wakamatsu, K., Yasuda, S., Towhata, I., Nakazawa, H., Kiku, H., Causes of Showa Bridge Collapse in the 1964 Niigata earthquake Based on Eyewitness Testimony. Soils and Foundations, 47(6), 1075-1087, 2007.
    42. Youd, T. L., & Perkins, D. M., Mapping of liquefaction severity index. Journal of Geotechnical Engineering, 113(11), 1374-1392, 1987.
    43. Youd, T.L., Ground failure investigations following the 1964 Alaska earthquake, 10th U.S. National Conference on Earthquake Engineering, Anchorage, Alaska, 2014.

    無法下載圖示 校內:2026-08-09公開
    校外:2026-08-09公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE