| 研究生: |
黃健銘 Huang, Chien-Ming |
|---|---|
| 論文名稱: |
矩形管道內電滲微渦流之半解析解及其在微混合器設計之應用 A Semianalytical Solution of Electroosmotic Microvortices in a Rectangular Conduit and Its Applications in Micromixer Design |
| 指導教授: |
黃世宏
Hwang, Shyh-Hong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 電滲透 、微渦流 、電動滑移速度 、混沌對流 、微混合器 |
| 外文關鍵詞: | Electroosmosis, Microvortex flow, Electrokinetic slip velocity, Chaotic advection, Micromixer |
| 相關次數: | 點閱:85 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文針對矩形微管道內懸浮粒子,利用時變電滲微渦流產生之混沌對流來建構微混合器,其設計原理是透過空間與時間地調整埋設於液固界面下電極片之電壓,以在壁面形成特定時變且非均勻介達電位分布,進而在外加平行電場作用下產生所需微渦流。
文中提出封閉矩形區域內電滲流的二維半解析解,以準確且快速計算流體的運動速度。此半解析解結合文獻上半圓區域電滲流解析解以及矩形底部半圓弧之數值解,推導出四種微渦流類型,分別為環繞整個管道截面的單一渦流、同等大小反向旋轉的四個渦流、上下反向旋轉的雙渦流、以及左右反向旋轉的雙渦流。模擬研究顯示週期性地變換前兩種微渦流場類型,可以產生混沌對流以混合粒子,而最佳混合效率可藉由選擇適當的週期大小和管壁滑移速度來達成。
This thesis investigates the construction of a micromixer using chaotic advection created by time-dependent electroosmotic microvortex flows for suspended particles in a rectangular conduit. The design principle is to modulate spatially and temporally the voltages of the electrodes embedded beneath the liquid-solid interface. Such modulation would form a specific time-dependent and nonuniform distribution of zeta potentials at the conduit’s walls and subsequently creates the required microvortex flows when subjected to external parallel electric fields.
A two-dimensional semianalytical solution is proposed to compute accurately and rapidly the fluid velocities of electroosmotic flows in a confined rectangular cell. This solution combines an analytical solution for semicircular electroosmotic flows in the literature and the numerical solution along the semicircular arc on the bottom of the rectangular cell to derive four microvortex patterns. The four patterns consist of, respectively, a single vortex circulating across the entire cell, four counter-rotating vortices of equal size, two counter-rotating vortices on the upper and lower sides, and two counter-rotating vortices on the left and right sides. Simulation studies show that chaotic advection for particle mixing can be induced by periodically alternating between the first two flow patterns, while the best mixing efficiency can be achieved by properly selecting the period and the slip velocities at the conduit’s walls.
[1] Manz, A., Graber, N. and Widmer, H. M., “Miniaturized Total Chemical Analysis System: A Novel Concept for Chemical Sensing,” Sens. Actuator B-Chem., 1, 244 (1990).
[2] Gravesen, P., Branebjerg, O. J. and Jensen, S., “Microfluidics – A Review,” J. Micromech. Microeng., 3, 168 (1993).
[3] Shoji, S., “Microfabrication Technologies and Micro-flow Devices for Chemical and Bio-chemical Micro Systems,” Microprocesses Nanotechnol., 99, 72 (1999).
[4] Harrison, D. J. and Berg, A., Micro Total Analysis Systems 98, Kluwer Academic Publishers, Netherlands (1998).
[5] Ghosal, S., “Fluid Mechanics of Electroosmotic Flow and Its Effect on Band Broadening in Capillary Electrophoresis,” Electrophoresis, 25, 214 (2004).
[6] Borowsky, J. F., Giordano, B. C., Lu, Q., Terry, A. and Collins, G. E., “Electroosmotic Flow-Based Pump for Liquid Chromatography on a Planar Microchip,” Anal. Chem., 80, 8287 (2008).
[7] Liu, S. J., Hwang, S. H. and Wei, H. H., “Nonuniform Electro-osmotic Flow on Charged Strips and Its Use in Particle Trapping,” Langmuir, 24, 13776 (2008).
[8] Probstein, R. F., Physicochemical Hydrodynamics: An Introduction, 2nd ed., John Wiley and Sons, New York (1994).
[9] Ben, Y. and Chang, H. C., “Nonlinear Smoluchowski Slip Velocity and Micro-vortex Generation,” J. Fluid Mech., 461, 229 (2002).
[10] Qian, S. and Bau, H. H., “A Chaotic Electroosmotic Stirrer,” Anal. Chem., 74, 3616 (2002).
[11] Brunet, E. and Ajdari, A., “Thin Double Layer Approximation to Describe Streaming Current Fields in Complex Geometries: Analytical Framework and Applications to Microfluidics,” Phys. Rev. E, 73, 056306 (2006).
[12] Dukhin, S. S. and Miller, R., “On the Theory of Adsorption Kinetics of Ionic Surfactants at Fluid Interfaces 3. Generalization of the Model,” Colloid Polym. Sci., 269, 923 (1991).
[13] Long, D., Stone, H. A. and Ajdari, A., “Electroosmotic Flows Created by Surface Defects in Capillary Electrophoresis,” J. Colloid Interface Sci., 212, 338 (1999).
[14] Stroock, A. D., Weck, M., Chiu, D. T., Huck, W. T. S., Kenis, P. J. A., Ismagilov, R. F. and Whitesides, G. M., “Patterning Electro-Osmotic Flow with Patterned Surface Charge, ” Phys. Rev. Lett., 84, 3314 (2000).
[15] Kamholz, A. E., Weigl, B. H., Finlayson, B. A. and Yager, P., “Quantitative Analysis of Molecular Interaction in a Microfluidic Channel: the T-sensor, ” Anal. Chem., 84, 5340 (1999).
[16] Kamholz, A. E. and Yager, P., “Molecular Diffusive Scaling Laws in Pressure-driven Microfluidic Channels: Deviation from One-dimensional Einstein Approximations, ” Sensors. Actuators.B, 82, 117 (2002).
[17] Ismagilov, R. F., Stroock, A. D., Kenis, P. J. A., Whitesides, G. M. and Stone, H. A., “Experimental and Theoretical Scaling Laws for Transverse Diffusive Broadening in Two-phase Laminar Flows in Microchannels, ” Appl. Phys. Lett., 76, 2376 (2000).
[18] Gray, B. L., Jaeggi, D., Mourlas, N. J., van Drieenhuizen, B. P., Williams, K. R., Maluf, N. I. and Kovacs, G. T. A., “Novel Interconnection Technologies for Integrated Microfluidic Systems, ” Sensors. Actuators.A, 77, 57 (1999).
[19] Munson, M. S. and Yager, P., “Simple Quantitative Optical Method for Monitoring the Extent of Mixing Applied to a Novel Microfluidic Mixer, ” Anal. Chem. Acta, 507, 63 (2004).
[20] Liu, R. H., Stremler, M. A. Sharp, K. V., Olsen, M. G., Santiago, J. G., Adrian, R. J., Aref, H. and Beebe, D. J., “Passive Mixing in a Three-dimensional Serpentine Microchannel,” J. Microelectromech. Syst., 9, 190 (2000).
[21] Vijiayendran, R. A., Motsegood, K.M., Beebe, D. J. and Leckb, and D. E., “Evaluation of a Three-dimensional Micromixer in a Surface-based Biosensor,” Langmuir, 19 , 1824 (2003).
[22] Johnson, T. J., Ross, D. and Locascio, L. E., “Rapid Microfluidic Mixing, ” Anal. Chem., 74 , 45 (2002).
[23] Deshmukh, A. A., Liepmann, D. and Pisano, A. P., “Continuous Micromixer with Pulsatile Micropumps,” IEEE Workshop on Solid-State Sensor and Actuator Workshop, Hilton Head Island, SC, 73 (2000).
[24] Deshmukh, A. A., Liepmann, D. and Pisano, A. P., “Characterization of a Micro-Mixing, Pumping, and Valving System”, Proceedings of the 11th International Conference on Solid State Sensors and Actuators (Transducers’01), Munich, 950 (2001).
[25] Lu, L. H., Ryu, K. S. and Liu, C., “A Magenetic Microstirrer and Array for Microfluidic Mixing,” J. Microelectromech. Syst, 11, 462 (2002).
[26] Liu, S. J., Wei, H. H., Hwang, S. H. and Chang, H. C., “Dynamic Particle Trapping, Release, and Sorting by Microvortices on a Substrate,” Physical Review E, 82, 026308 (2010).
[27] Attard, P., Antelmi, D. and Larson, I., “Comparsion of Zata Potential with the Diffuse Layer Potential from Charge Titration,” Langmuir, 16, 1542 (2000).
[28] Theemsche, A. V., Deconinck, J., Bossche, B. V. and Bortels, L., “Numerical Solution of a Multi-ion One-potential Model for Electroosmotic Flow in Two-dimensional Rectangular Microchannels,” Anal. Chem., 74, 4919 (2002).
[29] Ben, Y., Nonlinear Electrokinetic Phenomena in Microfluidic Devices, Ph.D. Dissertation, University of Notre Dame (2004).
[30] Leal, L. G., Laminar Flow and Convective Transport Processes: Scaling Principles and Asymptotic Analysis, Butterworth-Heinemann College, Boston (1992).