簡易檢索 / 詳目顯示

研究生: 張伯勳
Chang, Po-Hsun
論文名稱: 流域地下水補注量與補注潛能區之評估
Assessment of Basin Groundwater Recharge and Mapping Recharge Potential Zone
指導教授: 李振誥
Lee, Cheng-Haw
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 96
中文關鍵詞: 水平衡模式GIS地下水補注潛能
外文關鍵詞: water balance model, GIS, groundwater recharge potential
相關次數: 點閱:99下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣的水資源在空間與時間上分佈非常不均勻,近年來由於工業的發展與人民生活水平的提升,尤其對於地下水資源的需求與開發與日俱增。然而過於抽取地下水除了造成地下水位逐年下降,且易造成嚴重的地層下陷,因此地下水資源及補注區的評估對於地下水系統的管理是相當重要的。本研究主要目的為評估知本溪及金崙溪流域之地下水補注量以及劃分地下水補注潛能區二部份。首先應用水平衡概念建構流域水文補注模式,探討流域內各水文分量之關係,以推估流域地下水系統補注量。同時,根據經濟部水利署(2003)所繪製之地下水資源圖以及降雨資料,進行單位網格計算空間分佈之地下水補注量。結果顯示,以流域水平衡模式推估常年地下水補注量,知本溪流域為609.2mm;金崙溪流域為600.5mm。而單位網格計算法之結果,知本溪流域為579.9mm;金崙溪流域為567.3mm。兩種推估方式於知本溪流域上相對誤差為4.8%;金崙溪流域則為5.5%,此說明兩方法所推估之地下水補注量相當接近。空間分佈之地下水補注量圖亦說明兩流域之地下水補注來源大多來自中上游地區。

    另外,針對不同地下水補注影響因素進行知本溪及金崙溪流域地下水補注潛能區劃分。其中,影響因子包括岩性、土地利用/覆蓋、線型構造、河系以及坡度等五項。根據航照圖、地質圖幅、國土利用資料庫以及現地探勘驗證,決定地下水補注影響因子之性質與特徵,並應用地理資訊系統(GIS)軟體之空間整合功能性進行地下水補注潛能區之劃分。結果顯示,知本溪流域極佳之地下水補注潛能區集中於下游地區,研判此地區是由於礫石層與農地分佈導致入滲能力優越且河系密集有助於河水補注地下水系統;次佳之區域為上游地區,由於變質石灰岩之影響。金崙溪流域較佳之地下水補注潛能區亦位於下游地區,主要原因為農地裸土以及部份礫石層分佈。

    Water resources in Taiwan are unevenly distributed spatially and temporally. Due to the industrial development of Taiwan in recent years and the rise of people’s standard of living the demand for groundwater resource development is growing with each passing day. Over-exploitation has resulted in the decline of groundwater levels and land subsidence. Therefore, the assessment of the potential zone of groundwater recharge is an extremely important topic in proper management of groundwater systems. The main purpose of this thesis is to assess the groundwater recharge and to map recharge potential zone in the Chih-Ben and Jin-Lun creek basin. First, a water balance concept in this study is applied to establish the basin hydrologic model in order to estimate the amounts of precipitation, surface runoff, evapotranspiration, and groundwater recharge in the basin. Moreover, the results of groundwater recharge from the unit grids calculate method is compared the result from Taiwan the groundwater resources map by the Water Resource Agency (2003).The results show the amount of annual groundwater recharge by using water balance model in Chih-Ben and Jin-Lun creek basin is 609.2 mm/yr and 600.5 mm/yr, respectively, and by using unit grids calculate method is 579.9 mm/yr and 567.3 mm/yr, respectively. The relative error of annual groundwater recharge between water balance model and unit grids calculate method in Chih-Ben and Jin-Lun creek basins is 4.8% and 5.5%, respectively. According to the distribution map of the groundwater recharge, the zone of the groundwater recharge can be shown in upstream region of both basins.

    In order to assess the groundwater potential zone, the technologies of remote sensing and Geographical Information System (GIS) are applied to integrate five contributing factors including lithology, land cover/land use, lineaments, drainage, and slope. By the way, the weight values of the groundwater recharge were determined by the influencing factors such as aerial photos, geology map, database of the land use, and field verification etc. The resultant map of the groundwater potential zone reveals that the highest recharge potential area is located towards the downstream regions in the Chih-Ben creek basin. This is because gravelly sand and agricultural land with the highly infiltration rate are dominated. On the other hand, the moderate recharge potential area is located at upstream regions due to the limestone with moderate infiltration rate. In the Jin-Lun creek basin, the highest recharge potential area is located towards the downstream regions because of lithology and land cover/land use.

    中文摘要 Ⅰ 英文摘要 Ⅱ 誌謝 Ⅳ 目錄 Ⅴ 表目錄 Ⅶ 圖目錄 Ⅷ 符號表 Ⅹ 第一章 緒論 1 1.1前言及研究目的 1 1.2文獻回顧 2 1.2.1地下水補注量相關文獻 2 1.2.2地下水補注潛能區相關文獻 4 1.3研究方法與流程 6 第二章 理論模式 8 2.1水平衡模式建構 8 2.2地下水補注潛能模式架構 12 2.2.1地下水補注潛能因子建立 22 2.2.1.1岩性 22 2.2.1.2土地利用及覆蓋 22 2.2.1.3線型構造 23 2.2.1.4河系 24 2.2.1.5坡度 24 2.2.2地下水補注潛能因子相互影響關係建立 24 第三章 流域地下水資源調查分析 26 3.1研究區域概述 26 3.1.1地理位置 26 3.1.2地形地質 27 3.1.3氣象水文 33 3.1.4流域地下水資源圖 36 3.2水平衡資料分析 38 3.2.1降雨量 38 3.2.2地表逕流量 41 3.2.3蒸發散量 43 3.2.4土壤含水量 46 3.3應用水平衡模式推估流域地下水補注量之結果 46 3.4地下水資源圖與空間降雨量資料分析 50 3.5應用地下水資源圖推估流域地下水補注量之結果 53 第四章 流域地下水補注潛能區劃分 55 4.1地下水補注潛能因子空間分析與權重建立 55 4.1.1岩性種類分析 58 4.1.2土地利用及覆蓋狀況分析 60 4.1.3 線型構造長度密度分析 61 4.1.4河系長度密度分析 66 4.1.5坡度值分析 67 4.2流域地下水補注潛能區劃分之結果 69 第五章 結論與建議 71 5.1結論 71 5.2建議 72 參考文獻 74

    1.Adinarayana, J., and N. Ramakrishna, Integration of multi-seasonal remotely-sensed images for improved landuse classification of a hilly watershed using geographical information systems, International Journal of Remote Sensing, 17: 1679-1688, 1996.

    2.Armbruster, V., and C. Leibundgut, Determination of spatially and temporally highiy detailed groundwater recharge in porous aquifers by a SVAT model, Physics and Chemistry of the Earth Part B-Hydrology Ocean and Atmosphere, 26(7-8): 607-611, 2001.

    3.Barnes, B. S., The structure of discharge recession curves, Transactions of American Geophysical Union, 20: 721-725, 1939.

    4.Bastiaanssen, W. G. M., D. J. Molden, and I. W. Makin, Remote sensing for irrigated agriculture: example from research and possible applications, Agricultural Water Management, 46: 137-155, 2000.

    5.Batelaan, O., and F. D. Smedt, GIS-based recharge estimation by coupling surface-subsurface water balance, Hydrogeology Journal, 337: 337-335, 2007.

    6.Bierwirth, P. N., and W. D. Welsh, Delineation of recharge beds in the Great Artesian Basin using airborne gamma-radiometrics and satellite remote sensing, Report for the National Landcare Program, Bureau of Rural Sciences, Canberra, Australia, p33, 2000.

    7.Bou Kheir R., A. Shaban, M-C. Girard, M. Khawlie, and C. Abdallah, Caract´erisation morpho-p´edologique des zones karstiques du Liban sensibilit´e des sols `a l’´erosion hydrique. S´echeresse 14:4, 2003.

    8.Bromley, J., W. M. Edmunds, E. Fellman, J. Brouwer, S. R. Gaze, J. Sudlow, and J. D. Taupin, Estimation of rainfall inputs and direct recharge to the deep unsaturated zone of southern Niger using the chloride profile method, Journal of Hydrology, 188-189: 139-154, 1997.

    9.Brunner, P., P. Bauer, M. Eugster, and W. Kinzelbach, Using remote sensing to regionalize local precipitation recharge rates obtained from the Chloride Method, Journal of Hydrology, 294: 241-250, 2004.

    10.Chen, W. P., and C. H. Lee, Estimating Groundwater Recharge from Stream flow Records, Environmental Geology, 44: 257-265, 2003.

    11.Chen, J. F., C. H Lee, T-C. Jim Yeh, and J. L. Yu, A water budget model for the Yun-Lin plain, Taiwan,” Water Resources Management, 19(5): 483-504, 2005.

    12.Cherkauer, D. S., Quantifying ground water recharge at multiple scales using PRMS and GIS, Ground Water, 42(1): 97-110, 2004.

    13.Cherkauer, D. S., and S. A. Ansari, Estimating ground water recharge from topography, hydrogeology, and land cover, Ground Water, 43(1): 102-112, 2005.

    14.De Vries, J., and I. Simmers, Ground-water recharge: An overview of processes and challenges, Hydrogeology Journal, 10(1): 5-17, 2002.

    15.Edet, A. E., C. S. Okereke, S. C. Teme, and E. O. Esu, Application of remote sensing data to groundwater exploration: a case study of the Cross River State, southeastern Nigeria, Hydrogeology Journal, 6(3): 394-404, 1998.

    16.El-Baz F., and I. Himida, Groundwater potential of the Sinai Peninsula, Egypt. Project Summery. AID, Cairo, 1995.

    17.El-Shazly EM, N. M. El-Raikaiby, and I. A. El-Kassas, Groundwater investigation of Wadi Araba area, Eastern Desert of Egypt, Using Landsat Imagery, Proceedings of the 17th Symposium on Remote Sensing of the Environment, Ann Arbor, Michigan, 9-13 May 1983, pp 1003-1013, 1983.

    18.Fayer, M. J., G. W. Gee, M. L. Rockhold, M. D. Freshley, and T. B. Walters, Estimating recharge rates for a groundwater model using a GIS, Journal of Environmental Quality, 25: 510-518, 1996.

    19.Fazal, M. A., M. Imaizumi, S. Ishida, T. Kawachi, and T. Tsuchihara, Estimating groundwater recharge using the SMAR conceptual model calibrated by genetic algorithm, Journal of Hydrology, 303(1-4): 56-78, 2005.

    20.Freeze, R. A., and J. A. Cherry, Groundwater, Englewood, Prentice-Hall, 1979.

    21.Gee, G. W., P. J. Wierenga, B. J. Andraski, M. H. Young, M.J. Fayer, M. L. Rockhold, Variations in water balance and recharge potential at three western desert sites, Soil Science America Journal, 58: 63-71, 1994.

    22.Greenbaum, D., Review of remote sensing applications togroundwater exploration in basement and regolith. British Geological Survey Report OD 85(8):36, 1985.

    23.Greenbaum, D., Structural influences on the occurrence of groundwater in SE Zimbabwe, In Hydrology of Crystalline Basement Aquifers in Africa, edited by E. P. Wright and W. G. Burges. Geological Society Special Publication-66, pp. 77-85 (Bath, UK: Geological Society Publishing House), 1992.

    24.Jaiswal, R. K., S. Mukherjee, J. Krishnamurthy, and R. Saxena, Role of remote sensing and GIS techniques for generation of groundwater prospect zones towards rural development-an approach. International Journal of Remote Sensing, 24(5): 993-1008, 2003.

    25.Jason, T. J., Remote sensing of soil moisture: implications for groundwater recharge, Hydrogeology Journal, 10: 40-51, 2002.

    26.Kamaraju, M. V. V., A. Bhattacharya, G. S. Reddy, G. C. Rao, G. S. Murthy, and T. C. M. Rao, Groundwater potential evaluation of West Godavari District, Andhra Pradesh State, India- A GIS approach, Ground Water, 34(2): 318-325, 1995.

    27.Krishnamurthy, J., and G. Srinivas, Role of geological and geomorphological factors in groundwater exploration: a study using IRS LISS data, International Journal of Remote Sensing, 16: 2595-2618, 1995.

    28.Krishnamurthy, J., N. Venkatesa Kumar, V. Jayaraman, and M. Manivel, An approach to demarcate groundwater potential zones through remote sensing and geographic information system, International Journal of Remote Sensing, 17: 1867-1884, 1996.

    29.Kulandaiswamy, V. C., and S. Seetharaman, A note on Barnes’s method of hydrograph separation, Journal of Hydrology, 9: 222-229, 1969.

    30.Lattman, L. H., and R. R. Parizek, Relationship between fracture traces and the occurrence of groundwater in carbonate rocks, Journal of Hydrology, 2: 73-91, 1964.

    31.Leblanc, M., C. Leduc, M. Razack, J. Lemoalle, D. Dagorne, and L. Mofor, Application of remote sensing and GIS for groundwater modeling of large semiarid areas: example of the Lake Chad Basin, Africa. Hydrology of Mediterranean and Semiarid Regions Conference, Montpieller, France, April 2003, IAHS(Red Books Series), Wallingford, UK, 278: 186-192, 2003.

    32.Lebuc, C., G. Favreau, and P. Schroeter, Long-term rise in a Sahelian water table: the Continental Terminal in southwest Niger, Journal of Hydrology, 243: 43-54, 2001.
    33.Lerner, D. N., A. S. Issar, and I. Simmers, Groundwater recharge, a guide to understanding and estimating natural recharge, International Association of Hydrogeologists, Kenilworth, Rep 8, p345, 1990.

    34.Lee C. H., W. P. Chen, and R. H. Lee, Estimation of Groundwater Recharge Using Water Balance Coupled with Base-Flow-Record Estimation and Stable-Base-Flow Analysis, Environmental Geology, 51: 73-82, 2006.

    35.Linsley, R. K., Jr. Kohler, M. A. and J. L. H. Paulhus, Hydrology for Engineers(3rd.ed.), McGraw-Hill, New York, 508, 1982.

    36.Lubczynski, M. W., and J. Gurwin, Integration of various data sources for transient groundwater modeling with spatio-temporally variable fluxes: Sardon study case, Spain, Hydrogeology Journal, 306: 71-96, 2005.

    37.Mabee, S. B., K. C. Hardcastle, and D. W. Wise, A method for collecting and analyzing lineaments for regional-scale fractured bedrock aquifer studies, Ground Water, 32(6): 884-894, 1994.

    38.Meijerink A. M. J., Remote sensing applications to hydrology: groundwater, Hydrology Science, 41(4): 549-561, 1996.

    39.Minor, T., C. Russell, M. Chesley, J. Englin, P. Sander, J. Carter, B. Knowles, S. Acheampong, and A. McKay, Application of geographic information system technology to water well siting in Ghana, West Africa: a feasibility study, Publ. no. 44033, Desert Research Institute, Reno, USA, p33, 1995.

    40.Misstear, B. D. R., Groundwater recharge assessment: a key component of river basin management, In: Proc. National Hydrology Seminar on River Basin Management(Irish National Committees of the International Hydrology Programme and the International Committee for Irrgation and Drainage), Tullamore, 21 November 2000, 52-59, 2000.

    41.Mukherjee, S., Targeting saline aquifer by remote sensing and geophysical methods in a part of Hamirpur-Kanpur, India, Hydrology Journal, 19, 53-64, 1996.

    42.Murthy, K. S. R., Groundwater potential in a semi-arid region of Andhra Pradesh-a geographical information system approach, International Journal of Remote Sensing, 21: 1867-1884, 2000.

    43.NRSA, Land and water resources survey of drought affected district-Kolar, Karnataka, Technical Report, National Remote Sensing Agency, Hyderabad, 1987.

    44.O’Leary, D. W., J. D. Friedman, and H. A. Poh, Lineaments, linear, lineations: some standards for old terms, Geol Soc Am Bull, 87: 1463-1469, 1976.

    45.Raj, S., and A. K. Sinha, An integral approach for the delineation of potential groundwater zones using satellite data: case study, Udaipur District, Rajasthan, Asia-Pacific Remote Sensing Journal, 2: 61-64, 1989.

    46.Rango, A., and A. I. Shalaby, Operational applications of remote sensing in hydrology: success, prospects and problems, Hydrology Science, 43(6): 947-968, 1998.

    47.Roy, A. K., Hydromorphogeology for groundwater targeting and development in Dehradun valley, UP. InMountain ResourceManagement and Remote Sensing, edited by P. N. Gupta and A. K. Roy (Dehradun, India: Surya Publications), 1991.

    48.Rutledge, A. T., Methods of using streamflow records for estimating total and effective recharge in the Appalachian Valley and Ridge, Piedmont, and Blue Ridge physiographic provinces, in Hotchkiss, W. R. and Johnson, A. I., eds., Regional aquifer system of the United States, aquifers of the southern and eastern states, American Water Resources Association Monograph Series, 17: 59-73, 1992.

    49.Salama, R. B., I. Tapley, T. Ishii, and G. Hawkes, Identification of areas of recharge and discharge using Landsat-TM satellite imagery and aerial photography mapping techniques, Hydrogeology Journal, 162: 119-141, 1994.

    50.Salman, A. A., Using Landsat imagery interpretation prospection around Qena providence, Egypt. International Journal of Remote Sensing, 4:1489-1497, 1983.

    51.Sander, P., Lineaments in groundwater exploration: a review of applications and limitations, Hydrogeology Journal, 15: 71-74, 2007.

    52.Sander, P., T. B. Minor, and M. M. Chesley, Ground-water exploration based on lineament analysis and reproducibility tests, Ground Water, 35(5): 888-894, 1997.

    53.Saraf, A. K., and P. R. Choudhury, Integrated remote sensing and GIS for groundwater exploration and identification of artificial recharge sites, International Journal of Remote Sensing, 19: 1825-1841, 1998.

    54.Saraf, A. K., and S. K. Jain, Integrated use of remote sensing and GIS methods for groundwater exploration in parts of Lalitpur District, UP. Proceedings of International Conference on Hydrology and Water Resources, New Delhi, India, 20-22 December, 1993.

    55.Scanlon, B. R., R. W. Healy, and P. G. Cook, Choosing appropriate techniques for quantifying groundwater recharge, Hydrogeology Journal, 10: 18-39, 2002.

    56.Sener, E., A. Davraz, and M. Ozcelik, An integration of GIS and remote sensing in groundwater investigations: A case study in Burdur, Turkey, Hydrogeology Journal, 13: 826-834, 2005.

    57.Shaban, A., M. Khawlie, and C. Abdallah, Use of remote sensing and GIS to determine recharge potential zone: the case of Occidental Lebanon, Hydrogeology Journal, 14: 433-443, 2006.

    58.Shahid, S., S. K. Nath, and J. Roy, Groundwater potential modeling in a soft rock area using a GIS, International Journal of Remote Sensing, 21: 1919-1924, 2000.

    59.Simmers, I., Estimation of natural groundwater recharge, Reidel, Boston, p510, 1988.

    60.Singh, A. K., and S. R. Prakash, An integrated approach of remote sensing, geophysics and GIS to evaluation of groundwater potentiality of Ojhala sub-watershed, Mirjapur district, U. P., India, www.GISdevelopment.net (accessed on June 25, 2003), 2002.

    61.Solomon, S., and F. Quiel, Groundwater study using remote sensing and geographic information system(GIS) in the central highlands of Eritrea, Hydrogeology Journal, 14(6): 1029-1041, 2006.

    62.Sree Devi P.D., Srinivasulu S. and Kesava Raju K., Hydrogeomorphological and Groundwater Prospects of the PageruRiver Basin by Using Remote Sensing Data, Environmental Geology, 40: 1088-1094, 2001.

    63.Stone, D. B., C. L. Moomaw, and A. Davis, Estimating recharge distribution by incorporating runoff from mountainous areas in an alluvial basin in the Great Basin region of the southwestern United State, Ground Water, 39(6): 807-818, 2001.

    64.Subba, R. N., G. K. J. Chakradhar, and V. Srinivas, Identification of groundwater potential zones using remote sensing techniques in and around Guntur Town, Andhra Pradesh, India 29 (1&2):69-78, 2001.

    65.Szilagyi, J., F. E. Harvey, and J. F. Ayers, Regional estimation of base recharge to ground water using water balance and a base-flow index, Ground Water, 41(4): 504-513, 2003.

    66.Szilagyi, J., F. E. Harvey, and J. F. Ayers, Regional estimation of total recharge to ground water in Nebraska, Ground Water, 43(1): 63-69, 2005.

    67.Teeuw, R. M., Groundwater exploration using remote sensing and a low-cost geographical information system, Hydrogeology Journal, 3(3):21-30, 1995.

    68.Tomes, B. J., The use of SKYLAB and Landsat in a geohydrological study of the Paleozoic section, western-central Bighorn Mts. Wyoming. Proceedings of NASA Earth Resources Survey Symposium. NASA. TMX 58168 1B SECT. WPP, 2137-2171, 1975.

    69.Tweed, S. O., M. Leblanc, J. A. Webb, and M. W. Lubczynski, Romote sensing and GIS for mapping groundwater recharge and discharge areas in salinity prone catchments, southeastern Australia, Hydrogeology Journal, 15: 75-96, 2007.

    70.Yeh H. F., C. H. Lee, J. F. Chen, and W. P. Chen, Estimation of groundwater recharge using water balance model, Water Resources, 34 (2): 171-180, 2007.

    71.Yeh, H. F., J. F. Chen, and C. H. Lee, Application of a Water Budget Model to Evaluate Rainfall Recharge and Slope Stability, Journal of the Chinese Institute of Environmental Engineering, 14 (4), 227-237, 2004.

    72.Yeh H. F., J. F. Chen, W. P. Chen, K. L. Chang, and C. H. Lee, Evaluation of Pan Coefficients for Estimating Reference Evapotranspiration in Southern Taiwan, American Geophysical Union Annual Fall Meeting, San Francisco, USA, 2006.

    73.李振誥、陳尉平、李如晃,應用基流資料估計法推估台灣地下水補注量,臺灣水利,50(1),69-71,2002。

    74.夏軍,水文非線性系統理論與方法,武漢大學出版社,2002。

    75.陳進發、李振誥、葉義章、余進利,雲林地區未飽和層水平衡模式解析之研究,台灣水利,52(2),69-81,2004。

    76.葉信富、陳進發、李振誥,降雨入滲對坡地穩定影響之研究,中華水土保持學報,36(2),145-159,2005。

    77.經濟部水利署,台灣地下水資源圖,2003。

    下載圖示 校內:立即公開
    校外:2007-08-03公開
    QR CODE