簡易檢索 / 詳目顯示

研究生: 盧德恩
Lu, De-En
論文名稱: 表面氯化處理之氮化鎵/氮化鋁鎵金屬-半導體-金屬光檢測器低頻雜訊特性研究
Low frequency noise of chlorine-treated GaN/AlGaN MSM-photodetectors
指導教授: 李清庭
Lee, Ching-Ting
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 58
中文關鍵詞: 光檢測器氮化鎵
外文關鍵詞: photodetector, GaN
相關次數: 點閱:67下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要提出利用表面氯化處理對氮化鎵/氮化鋁鎵金屬-半導體-金屬光檢測器之光電特性和低頻雜訊進行改善,並利用光電化學氧化法在指叉狀電極間成長氧化鎵作為護佈,更進一步改善元件之特性。由於一般由有機金屬化學氣相沉積法成長的氮化鎵系列半導體在表面存在表面態位和鎵懸鍵,這些缺陷的存在降低了氮化鎵元件的工作表現。表面氯化處理有效改善由表面態位缺陷產生的內部增益,在偏壓5V與入射光波長360nm時,元件的量子效率×內部增益分別從無氯化處理的188.0%降低至氯化處理後的44.2%,元件的紫外-可見光拒斥比也從無氯化處理的7.32×101提升至氯化處理後的6.67×102;另一方面,表面氧化層護佈能更加減少表面態位,並使得元件表面的反射率有所下降,進而提升元件的量子效率,元件的量子效率×內部增益提升至47.6%、紫外-可見光拒斥比也提升至8.20×102。
      表面氯化處理使得氮化鎵表面態位減少,同時也改善金屬-半導體蕭特基接觸,進而改善低頻雜訊;利用光電化學氧化法在指叉狀電極間成長氧化鎵作為護佈也會改善元件在低頻雜訊的表現,氧化層護佈使得氮化鎵表面態位減少,更進一步改善低頻雜訊。在偏壓5V時,無處理元件、表面氯化處理元件及表面氯化處理與氧化層護佈元件的等效雜訊功率分別為6.68×10–12 W、1.60×10–12 W和1.28×10–12 W,檢測度分別為4.7×1010 cmHz0.5W–1、1.9×1011 cmHz0.5W–1和2.5×1011 cmHz0.5W–1。

    To improve the optoelectronic characteristics and low frequency noise of GaN/AlGaN metal-semiconductor-metal photodetectors (MSM-PDs), the chlorination surface treatment is applied in fabrication. Furthermore, a photoelectrochemical oxidation method is used to directly grow the oxide film of GaN between the interdigital electrodes of GaN/AlGaN MSM-PDs. This acts as a passivation layer to improve the characteristics of GaN/AlGaN MSM-PDs. The interface between metal and semiconductors is important for GaN-based devices due to the existence of surface states and Ga dangling bonds growth using metalorganic chemical vapor deposition (MOCVD). The surface states and Ga dangling bonds degrade the performance of GaN-based devices. The internal gain which attributed to the surface states can be suppressed by the chlorination surface treatment. The products of quantum efficiency and internal gain of the GaN/AlGaN MSM-PDs with and without chlorination surface treatment under a voltage of 5 V at a wavelength of 360 nm is 180.0% and 44.2%, respectively. The UV-visible rejection ratio of 6.67×102 and 7.32×101 was obtained for the GaN/AlGaN MSN-PDs with and without chlorination surface treatment. Besides, the process of oxide passivation grow by PEC can even more reduce the surface states and decrease the reflectivity on the surface of GaN. The products of quantum efficiency and internal gain of the GaN/AlGaN MSM-PDs with oxide passivation can be increase to 47.6%. The UV-visible rejection ratio of 8.20×102 was obtained.

      The chlorination surface treatment effectively brings about a reduction on the surface state density of GaN samples. The Schottky contact of the chlorine-treated GaN/AlGaN MSM-PDs is also improved, so that the level of low frequency noise can efficiently be reduced. Furthermore, the process of oxide passivation can even more suppress the level of low frequency noise of GaN/AlGaN MSM-PDs. The noise equivalent power for the untreated, chlorine-treated, and oxide-passivated MSM-PDs, operated at 5 V, was 6.68×10–12 W, 1.60×10–12 W, and 1.28×10–12 W, respectively. The normalized detectivity for the untreated, chlorine-treated, and oxide-passivated MSM-PDs, operated at 5 V, was 4.7×1010 cmHz0.5W–1, 1.9×1011 cmHz0.5W–1, and 2.5×1011 cmHz0.5W–1, respectively.

    中文摘要……………………………………………………………I 英文摘要……………………………………………………………III 致謝…………………………………………………………………V 目錄…………………………………………………………………VI 表目錄………………………………………………………………IX 圖目錄………………………………………………………………X 第一章 簡介 / 1  1.1 氮化鎵系列紫外光檢測器…………………………………1  1.2 研究動機……………………………………………………1  1.3 論文架構……………………………………………………2 第二章 原理 / 7  2.1 氮化鎵表面氯化原理………………………………………7   2.1-1 原理……………………………………………………7   2.1-2 實驗架構………………………………………………8  2.2 氮化鎵氧化蝕刻原理………………………………………8   2.2-1 原理……………………………………………………8   2.2-2 實驗架構………………………………………………10  2.3 金屬-半導體接面理論……………………………………10   2.3-1 蕭特基接面理論………………………………………11  2.4 光檢測器工作原理…………………………………………12   2.4-1 金屬-半導體-金屬光檢測器工作原理………………13   2.4-2 響應度…………………………………………………14  2.5 低頻雜訊……………………………………………………15 第三章 元件製程 / 24  3.1 試片結構……………………………………………………24  3.2 元件製程……………………………………………………24   3.2-1 主動區製作……………………………………………24   3.2-2 表面氯化處理 ………………………………………25   3.2-3 蕭特基接觸 …………………………………………27   3.2-4 氧化層成長……………………………………………28 第四章 元件特性量測與分析 / 39  4.1 光電特性量測………………………………………………39   4.1-1 暗電流量測……………………………………………39   4.1-2 響應度對光波長的關係特性…………………………40   4.1-3 低頻雜訊量測…………………………………………42 第五章 結論 / 57

    [1]T. Murata, M. Hikita, Y. Hirose, Y. Uemoto, K. Inoue, T. Tanaka and D. Ueda, “Source resistance reduction of AlGaN-GaN HFETs with novel superlattice cap layer,” IEEE Trans. Electron. Devices, vol. 52, pp. 1042-1047, Jun. 2005.
    [2]W. Huang, T. Khan and T. P. Chow, “Enhancement-mode n-channel GaN MOSFETs on p and n-GaN/Sapphire Substrates,” IEEE Electron Device Lett., vol. 27, pp. 796-798, Oct. 2006.
    [3]C. T. Lee, H. W. Chen and H. Y. Lee, “Metal–oxide–semiconductor devices using Ga2O3 dielectrics on n-type GaN,” Appl. Phys. Lett., vol. 82, pp. 4304-4306, Jun. 2003.
    [4]C. T. Lee, U. Z. Yang, C. S. Lee, and P. S. Chen, “White light emission of monolithic carbon-implanted InGaN-GaN light-emitting diodes,” IEEE Photon. Technol. Lett., vol. 18, pp. 2029-2031, Oct. 2006.
    [5]H. Y. Lee, K. H. Pan, C. C. Lin, Y. C. Chang, F. J. Kao, and C. T. Lee, “Current spreading of III-nitride light-emitting diodes using plasma treatment,” J. Vac. Sci. Technol. B., vol. 25, pp. 1280-1283, Jul. 2007.
    [6]S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, “InGaN-based multi-quantum-well-structure laser diodes,” Jpn. J. Appl. Phys., vol. 35, PP. L74-L79, Jan. 1996.
    [7]J. C. Carrano, T. Li, P. A. Grudowski, C. J. Eiting, R. D. Dupuis, and J. C. Campbell, “Comprehensive characterization of metal–semiconductor–metal ultraviolet photodetectors fabricated on single-crystal GaN,” J. Appl. Phys., vol. 83, pp. 6148-6160, Jun. 1998.
    [8]M. Misra, D. Korakakis, H. M. Ng, and T. D. Moustakas, “Photoconductive detectors based on partially ordered AlxGa1 – xN alloys grown by molecular beam epitaxy,” Appl. Phys. Lett., vol. 74, pp. 2203-2205, Apr. 1999.
    [9]Y. Z. Chiou, Y. K. Su, S. J. Chang, J. Gong, Y. C. Lin, S. H. Liu, and C. S. Chang, “High detectivity InGaN-GaN multiquantum well p-n junction photodiodes,” IEEE J. Quantum Electron., vol. 39, no. 5, pp. 681-685, May. 2003.
    [10]E. Monroy, E. Munoz, F. J. Sáanchez, F. Calley, E. Calleja, B. Beaumont, P. Gibart, J. A. Munoz, and F. Cusso, “High-performance GaN p-n junction photodetectors for solar ultraviolet applications,” Semicond. Sci. Technol., vol. 13, pp. 1042-1046, Sep. 1998.
    [11]G. Y. Xu, A. Salvador, W. Kim, Z. Fan, C. Lu, H. Tang, H. Morkoc, G. Smith, M. Estes, B. Goldenberg, W. Yang, and S. Krishnankutty, “High speed, low noise ultraviolet photodetectors based on GaN p-i-n and AlGaN(p)-GaN(i)-GaN(n) structures,” Appl. Phys. Lett., vol. 71, pp. 2154-2156, Aug. 1997.
    [12]N. Biyikli, I. Kimukin, O. Aytur, and E. Ozbay, “Solar-blind AlGaN based p-i-n photodiodes with low dark current and high detectivity,” IEEE Photon. Technol. Lett., vol. 16, pp. 1718-1720, Jul. 2004.
    [13]C. T. Lee, C. C. Lin, H. Y. Lee, and P. S. Chen, “Changes in surface state density due to chlorine treatment in GaN Schottky ultraviolet photodetectors,” J. Appl. Phys., vol. 103, pp. 0945041-090544, May. 2008.
    [14]Z. C. Huang, J. C. Chen, and D. Wickenden, “Characterization of GaN using thermally stimulated current and photocurrent spectroscopies and its application to UV detectors,” J. Cryst. Growth, vol. 170, pp. 362-362, Jan. 1997.
    [15]C. H. Chen, S. J. Chang, Y. K. Su, G. C. Chi, J. Y. Chi, C. A. Chang, J. K. Sheu, and J. F. Chen, “GaN metal-semiconductor-metal ultraviolet photodetectors with transparent indium-tin-oxide Schottky contacts,” IEEE Photon. Technol. Lett., vol. 13, pp. 848-850, Aug. 2001.
    [16]M. Mosca, J. L. Reverchon, F. Omnes, and J. Y. Duboz, “Effects of the buffer layers on the performance of (Al,Ga)N ultraviolet photodetectors,” J. Appl. Phys., vol. 95, pp. 4367-4370, Apr. 2004.
    [17]J. Spradlin, S. Dogan, M. Mikkelson, D. Huang, L. He, D. Johnstone, and H. Morkoc, “Improvement of n-GaN Schottky diode rectifying characteristics using KOH etching,” Appl. Phys. Lett., vol. 82, pp. 3556-3558, May. 2003.
    [18]P. S. Chen, T. H. Lee, L. W. Lai, and C. T. Lee, “Schottky mechanism for Ni/Au contact with chlorine-treated n-type GaN layer,” J. Appl. Phys., vol. 101, pp. 0245071-0245074, Jan. 2007.
    [19]C. T. Lee, H. W. Chen, F. T. Hwang, and H. Y. Lee, “Investigation of Ga oxide films directly grown on n-type GaN by photoelectrochemical oxidation using He-Cd laser, ” J. Electron. Mater., vol.34, pp. 282-286, Jan. 2005.
    [20]P. S. Chen, T. H. Lee, L. W. Lai, and C. T. Lee, “Schottky mechanism for Ni/Au contact with chlorine-treated n-type GaN layer,” J. Appl. Phys., vol. 101, pp. 0245071-0245074, Jan. 2007.
    [21]C. S. Lee, Y. J. Lin, and C. T. Lee, “Investigation of oxidation mechanism for ohmic formation in Ni/Au contacts to p-type GaN layers,” Appl. Phys. Lett., vol. 79, pp. 3815-3817, Oct. 2001.
    [22]C. Youtsey, I. Adesida, and G. Bulman, “Highly anisotropic photoenhanced wet etching of n-type GaN,” Appl. Phys. Lett., vol. 71, pp. 2151-2153, Oct. 1997.
    [23]T. Rotter, D. Mistele, J. Stemmer, F. Fedler, J. Aderhold, J. Graul, V. Schwegler, C. Kirchner, M. Kamp, and M. Heuken, “Photoinduced oxide film formation on n-type GaN surfaces using alkaline solutions,” Appl. Phys. Lett., vol. 76, pp. 3923-3925, Jun. 2000.
    [24]C. T. Lee, H. W. Chen, F. T. Hwang, and H. Y. Lee, “Investigation of Ga oxide films directly grown on n-type GaN by photoelectrochemical oxidation using He-Cd laser,” J. Electron. Mater., vol. 34, pp. 282-287, Jan. 2005.
    [25]J. E. Borton, C. Cai, M. I. Nathan, P. Chow, J. M. Hove, A. Wowchak, and H. Morkoc, “Bias-assisted photoelectrochemical etching of p-GaN at 300 K,” Appl. Phys. Lett., vol. 77, pp. 1227-1229, Aug 2000.
    [26]D. K. Schroder, “Semiconductor material and device characterization,” New York, USA, 2006.
    [27]S. M. Sze, “Physics of semiconductor devices 2nd,” Taiwan, R.O.C, 1987.
    [28]S. M. Sze, “Semiconductor device physics and technology,” New York, USA, 2002.
    [29]K. Lee, M. Shur, T. A. Fjeldly, and T. Ytterdal, “Semiconductor devices modeling for VLSI,” New Jersey, USA, 1997.
    [30]S. M. Sze, D. J. Coleman, JR. and A. Loya, “Current transport in metal-semiconductor-metal (MSM) structures,” Solid-State Electron., vol. 14, pp. 1209-1218, Dec. 1971.
    [31]S. F. Soares, ”Photoconductive gain in a Schottky barrier photodiode,” Jpn. J. Appl. Phys., vol. 31, pp. 210-216, Feb. 1992.
    [32]H. Jiang, N. Nakata, G. Y. Zhao, H. Ishikawa, C. L. Shao, T. Egawa, T. Jimbo, and M. Umeno, “Back-illuminated GaN metal-semicaonductor-metal UV photodetector with high internal gain,” Jpn. J. Appl. Phys., vol. 40, pp. L505-L507, May 2001.
    [33]L. C. Chen, M. S. Fu, and I. L. Huang, “Metal-semiconductor-metal AlN mid-ultraviolet photodetectors grown by magnetron reactive sputtering deposition,” Jpn. J. Appl. Phys., vol. 43, pp. 3353-3355, Jun. 2004.
    [34]A. A. Balandin, “Noise and fluctuations control in electronics devices,” California, USA, 2002.
    [35]李欣縈(Hsin-Ying Lee), “Investigation of InAlGaP Schottky contact and applications in metal-semiconductor-metal photodetectors,” 中央大學光電與材料研究所博士論文, 2003.
    [36]陳柏松(Po-Sung Chen), “Investigation of performance for chlorine-treated GaN-based device,” 成功大學微電子工程研究所博士論文, 2007.
    [37]S. J. Chang, M. L. Lee, J. K. Sheu, W. C. Lai, Y. K. Su, C. S. Chang, C. J. Kao, G. C. Chi, and J. M. Tsai, “GaN metal-semiconductor-metal photodetectors with low-temperature-GaN cap layers and ITO metal contacts,” IEEE Electron Device Lett., vol. 24, pp. 212-214, Apr. 2003.
    [38]Y. K. Su, Y. Z. Chiou, F. S. Juang, S. J. Chang, and J. K. Sheu “GaN and InGaN metal-semiconductor-metal photodetectors with different Schottky contact metals,” Jpn. J. Appl. Phys., vol. 40, pp. 2996-2999, Apr. 2001.
    [39]F. K. Yam and Z. Hassan, “Investigation of the effects of porous layer on the electrical properties of Pt/n-GaN Schottky contacts,” Phys. B, vol. 403, pp. 3105-3109, Sep. 2008.
    [40]St. Kollakowski, U. Schade, E. H. Bottcher , and D. Bimberg, “Fully passivated AR coated InP/InGaAs MSM photodetectors,” IEEE Photon. Technol. Lett., vol. 6, pp. 1324-1326, Nov. 1994.
    [41]J. D. Hwang, C. Y. Kung, Y. H. Chen, C. S. Wei, and P. S. Chen, “Liquid phase deposition silicon dioxide for surface passivation in SiGe metal-semiconductor-metal photodetectors,” Thin Solid Films, vol. 515, pp. 4049-4052, Nov. 2006.
    [42]M. F. Al-Kuhaili, S. M. A. Durrani, and E. E. Khawaja, “Optical properties of gallium oxide films deposited by electron-beam evaporation,” Appl. Phys. Lett., vol. 83, pp. 4533-4535, Dec. 2003.
    [43]李正中, “薄膜光學與鍍膜技術,” 台灣, 2002.
    [44]J. C. Carrano, T. Li, P. A. Grudowski, C. J. Eiting, R. D. Dupuis, and J. C. Campbell, “Comprehensive characterization of metal–semiconductor–metal ultraviolet photodetectors fabricated on single-crystal GaN,” J. Appl. Phys., vol. 83, pp. 6148-6160, Mar. 1998.
    [45] S. J. Pearton, J. C. Zolper, R. J. Shul, and F. Ren, “GaN: processing, defects, and devices,” J. Appl. Phys., vol. 86, pp. 1-78, Jul. 1999.
    [46]P. S. Chen, T. H. Lee, L. W. Lai and C. T. Lee “Schottky mechanism for Ni/Au contact with chlorine-treated n-type GaN layer,” J. Appl. Phys., vol. 101, pp. 0245071-0245074, Jan. 2007.
    [47]C. T. Lee and H. Y. Lee, “Surface passivated function of GaAs MSM-PDs using photoelectrochemical oxidation method,” IEEE Photon. Technol. Lett., vol. 17, pp. 462-465, Feb. 2005.
    [48]H. Jiang, N. Nakata, G. Y. Zhao, H. Ishikawa, and C. L. Shao, “Back-illuminated GaN metal-semiconductor-metal UV photodetector with high internal gain,” Jpn. J. Appl. Phys., vol. 40, pp. L505-L507, May. 2001.
    [49]L. C. Chen , M. S. Fu, and I. L. Huang, “Metal–semiconductor–metal AlN mid-ultraviolet photodetectors grown by magnetron reactive sputtering deposition,” Jpn. J. Appl. Phys., vol. 43, pp. 3353-3356, Jun. 2004.
    [50]S. F. Soares, “Photoconductive gain in a Schottky barrier photodiode,” Jpn. J. Appl. Phys., vol. 31, pp. 210-216, Feb. 1992.
    [51]S. R. Morrison, “l/f noise from levels in a linear or planar array,” J. Appl. Phys., vol. 68, pp. 4151-5163, Oct. 1990.
    [52]S. R. Morrison, “l/f noise from levels in a linear or planar array. IV. The origin of the Hooge parameter,” J. Appl. Phys., vol. 72, pp. 4113-4117, Nov. 1992.

    下載圖示 校內:2010-06-26公開
    校外:2012-06-26公開
    QR CODE