| 研究生: |
李辰邦 Li, Chen-Bang |
|---|---|
| 論文名稱: |
適用於二維影像/三維視訊放大/縮小的
三維離散餘弦轉換對 Enlargement and Reduction of Image/Video by Three Dimensional Discrete Cosine Transform Pair |
| 指導教授: |
郭淑美
Guo, Shu-Mei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 資訊工程學系 Department of Computer Science and Information Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 英文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 快速三維離散餘弦轉換 、內插 、影像處理 、三維離散餘弦轉換 、二維影像/三維視訊放大/縮小 |
| 外文關鍵詞: | image processing, Three-dimensional discrete cosine transform, fast 3-D DCT, enlargement /reduction of image/video, interpolation |
| 相關次數: | 點閱:126 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文裡,提出一個有別於傳統的順向三維離散餘弦轉換與逆向三維離散餘弦轉換的新架構。就計算度而言,有效率的三維離散餘弦轉換對,使得公式更簡明並且具有系統性的架構,三維離散餘弦轉換對,對於其他應用的發展具有一種高度潛能。透過所提出的三維離散餘弦轉換對,二維影像/三維視訊放大與縮小的應用,在這論文裡也被提出。新的演算法有效地消除波紋和方塊效應,並且保持原先像素之間的特性。同時,由於離散餘弦轉換本身的偶函數特性,所提出的影像放大演算法證明了所被期望的對稱特質。因此,無論在資料壓縮、影像處理和視訊編碼領域,三維離散餘弦轉換對都能提供許多的應用。實驗結果顯示,所提出的機制在三維離散餘弦轉換對與對於序列、影像、視訊放大/縮小的演算上確實有良好的效果,就像所期望的。
In this thesis, a novel representation of the conventional forward three-dimensional (3-D) discrete cosine transform (DCT) and the inverse 3-D DCT are proposed. The pair of the computationally efficient 3-D DCT makes the formulation be more concise and with a systematic structure, which has a high potential on developments of other applications via the 3-D DCT pair. Applications for enlargement and reduction of images/videos implemented by the proposed 3-D DCT transform pair are presented in this paper also. These new algorithms effectively eliminate ripple and blocky effects and maintain the original characteristic. Moreover, due to the essentially even-function property of the DCT, the proposed enlargement of an image demonstrates the desired symmetric property. As a result, they can provide numerous applications whatever in data compression, image processing and video coding as well. Simulation results show that proposed mechanisms enable good performances for the proposed 3-D DCT pair and scaling algorithms of sequences, images and videos as expected.
[1] J. A. Rose and W. K. Pratt, “Interframe cosine transform image coding,” IEEE Trans. Commun., vol. 25, no. 11, pp. 1329-1338, 1977.
[2] G. Karlsson and M. Vetterli, “Three dimensional subband coding of video,” Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Processing, 1988, pp. 1100-1103.
[3] C. I. Podilchuk, N. S. Jayant, and N. Farvardin, “Three-dimensional subband coding of video,” IEEE Trans. Image Processing, vol. 4, no. 2, pp. 125-139, 1995.
[4] A. Ramaswamy and W. B. Mikhael, “A mixed transform approach for efficient compression of medical images,” IEEE Trans. Med. Imag., vol. 12, no. 4, pp. 803-811, 1996.
[5] H. Lee, Y. Kim, A. H. Rowberg, and E. A. Riskin, “Statistical distributions of DCT coefficients and their applications to an interframe compression algorithm for 3-D medical images,” IEEE Trans. Med. Imag., vol. 12, no. 3, pp. 478-485, 1993.
[6] D. Ho, D. Feng and K. Chen, “Dynamic image data compression in spatial and temporal domains: Theory and Algorithm,” IEEE Trans. Inform. Technol. Biomed., vol. 1, no. 4, pp. 219-228, 1997.
[7] O. Chantelou and C. Remus, “Adaptive transform coding of HDTV picture,” Int. Workshop Signal Processing in HDTV, pp.231-238, 1988.
[8] Y. L.Chan and W. C. Siu, “A new adaptive interframe transform coding using directional classification,” Proc. IEEE Int. Conf. Image Processing, vol.2, 1994, pp. 977-981.
[9] S. C. Tai, Y. G. Wu, and C. W. Lin, “An adaptive 3-D discrete cosine transform coder for medical image compression,” IEEE Trans. Inform. Technol. Biomed., vol. 4, no. 3, pp. 259-263, 2000.
[10] Y. L. Chan and W. C. Siu, “Variable temporal-length 3-D discrete cosine transform coding,” IEEE Trans. Image Processing, vol. 6, no. 5, pp. 758-763, 1997.
[11] T. H. Lai and L. Guan, “Video coding algorithm using 3-D DCT and vector quantization,” Proc. IEEE Int. Conf. Image Processing, vol. 1, pp. I-741-I-744, 2002.
[12] R. K. W. Chan and M. C. Lee, “3D-DCT quantization as a compression Technique for video sequences,” Proc. IEEE Int. Conf. Virtiual Systems and MultiMedia, 1997, pp. 188-196.
[13] T. Sikora, “The MPEG-4 video standard verification model,” IEEE Trans. Circuits and Systems for Video Technology, vol. 7, no. 1, pp. 19-31, 1997.
[14] T. Sikora, “MPEG digital video-coding standards,” IEEE Signal Processing Magazine, vol. 14, no.5, pp. 82-100, 1997.
[15] R. C. Gonzalez and R. E. Woods, Digital Image Processing, Upper Saddle River, NJ: Prentice Hall, 2002.
[16] J. A. Parker, R. V. Kenyon and D. E. Troxel, “Comparison of interpolating methods for image resampling,” IEEE Trans. Medical Imaging, vol. 2, no. 1, pp. 31-39, 1983.
[17] J. S. Lim, Two-Dimensional Signal and Image Processing, Upper Saddle River, NJ: Prentice Hall, 1990.
[18] E. Maeland, “On the comparison of interpolation methods,” IEEE Trans. Medical Imaging, vol. 7, no. 3, pp. 213-217, 1988.
[19] E. Meijering and M. Unser, “A note on cubic convolution interpolation,” IEEE Trans. Image Processing, vol. 12, no. 4, pp. 477-479, 2003.
[20] J. K. Han and S. U. Baek, "Parametric cubic convolution scaler for enlargement and reduction of image," IEEE Trans. Consumer Electronics, vol. 46, no. 2, pp. 247-256, 2000.
[21] S. Boussakta and H. O. Alshibami,” Fast algorithm for the 3-D DCT-II,” IEEE Trans. Signal Processing, vol. 52, no. 4, pp. 992-1001, 2004.
[22] M. Vetterli, P. Duhamel, and C. Guillemot, “Trade-offs in the computation of mono- and multi-dimensional DCTs,” in Proc. ICASSP, 1989, pp. 999-1002.
[23] Y. Zeng, G. Bi, and A. R. Leyman, “New polynomial transform algorithm for multidimensional DCT,” IEEE Trans. Signal Process., vol. 48, no. 10, pp. 2814-2821, 2000.
[24] Z. Wang, Z. He, C. Zou, and J. D. Z. Chen, “A generalized algorithm for n-D discrete cosine transform and its application to motion picture coding,” IEEE Trans. Circuits and Syst., vol. 46, no. 5, pp. 617-627, 1999.
[25] Y. Zeng, G. Bi, and A. C. Kot, “New algorithm for multidimensional type-III DCT,” IEEE Trans. Circuits and Syst., vol. 47, no. 12, pp. 1523-1529, 2000.
[26] Y. Zeng, G. Bi, and Z. Lin, “Combined polynomial transform and radix-q algorithm for multi-dimensional DCT-III,” Multidimensional Syst. Signal Process., vol. 13, pp. 79-99, 2002.
[27] M. Unser, A. Aldroubi, and M. Eden, “Fast B-spline transforms for continuous image representation,” IEEE Trans. on Pattern Analysis and Mechine Intelligence, vol. 13, no. 3, pp. 277-285, 1991.
[28] C. R. Wylie and L. C. Barrent, Advanced Engineering Mathematis, New York, NY: McGraw Hill, 1995.
[29] O. Alshibami, S. Boussakta, and M, Darnell, “Fast algorithm for the 3-D IDCT,” in IEEE Proceedings of the Fourth International Conference on Parallel and Distributed Computing, Applications and Technologies, pp. 825-828, 2003.
[30] O. Alshibami and S. Boussakta, “Three-dimensional algorithm for the 3-D DCT-III,” in Proc. Sixth Int. Symp. Commun., Theory Applications, pp. 104-107, July 2001.
[31] H. S. Hou, “A fast recursive algorithm for computing the discrete cosine transform,” IEEE Trans. on Acoustics, Speech, and Signal Processing, vol. ASSP-35, no. 10, pp. 1455-1461, 1987.
[32] M. A. Haque, “A two-dimensional fast cosine transform,” IEEE Trans. on Acoustic, Speech, and Signal Processing, vol. ASSP-33, no. 6, pp. 1532-1539, 1985.