簡易檢索 / 詳目顯示

研究生: 邱佳晨
Chiu, Chia-Chen
論文名稱: 近斷層速度脈衝效應對鋼筋混凝土柱塑性鉸參數定義之研究
Study on the Characteristic of Plastic Hinge for Reinforced Concrete Column considering the Velocity Pulse Effect
指導教授: 劉光晏
Liu, Kuang-Yen
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 160
中文關鍵詞: 鋼筋混凝土柱近斷層地震應變率塑性鉸
外文關鍵詞: RC column, near-fault effect, strain rate, plastic hinge
相關次數: 點閱:122下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究進行鋼筋混凝土方柱在不同軸壓下之靜態與動態反覆載重實驗, 以了解近斷層地震之速度脈衝效應對柱構件側力與位移曲線影響。試體依照 混凝土結構設計規範設計,共計四座高寬比3.5之單曲率柱,在國家地震工程研究中心台南實驗室BATS測試。實驗變數為軸壓力,分別為0.1及0.3 fc’Ag,並各有一座靜態及動態試驗。速度參數係參考2017-2018年間在國家地震工程研究中心台南實驗室之兩棟七層樓RC建築物振動台實驗,由二樓樓版之速度歷時,選擇250 mm/sec。遲滯迴圈結果顯示,各柱之破壞模式為撓曲破壞,試體側向強度隨軸壓比提高而增加,最大位移則減少。此外,比較動態及靜態實驗結果,動態效應下試體最大側力及初始勁度有所提升,最大位移則與靜態相近。根據試體所量測之應變率,採用CEB和Malvar等人之動態成長因子修正混凝土與鋼筋應力應變模式,並搭配TEASPA與XTRACT程式可以獲得考慮速度脈衝之塑性鉸參數及預測之側推曲線。分析結果顯示,近斷層地震作用下應考慮速度脈衝效應對材料模式影響,以合理掌握柱構件之側力位移曲線。

    In this study, the reinforced concrete square columns were subjected to repeated loading tests in both static state and dynamic state to understand their lateral force and displacement behavior under near-fault earthquakes. The experimental sample design is based on “Code for design of concrete structures”. The experimental group is 4 sets of reinforced column whose span-to-depth ratio is 3.5, and the predicted failure mode of all column is flexural failure. The variables are axial load ratio, including 0.1 and 0.3, and loading speeds, including 0, 250 mm/sec. The experimental results show that the lateral strength of the test body increases with the increase of the loading speed and axial load ratio, but the displacement of the peak intensity has a tendency to decrease. According to the strain rate measured by the specimen, the dynamic growth factor of CEB and Malvar el at. is used to correct the stress and strain modes of concrete and rebar. The TEASPA and XTRACT programs can be used to obtain the plastic hinge parameters considering the velocity pulse. The analysis results show that the influence of the velocity pulse effect on the material mode should be considered to reasonably predict the envelope of the lateral force displacement curve of the experiment.

    摘要 I Abstract II 誌謝 VI 目錄 VII 表目錄 X 圖目錄 XII 第1章 緒論 1 1.1 研究動機與目的 1 1.2 研究內容與方法 2 第2章 文獻回顧 6 2.1 前言 6 2.2 應變率對材料的影響 6 2.2.1 混凝土 6 2.2.2 鋼筋 7 2.3 應變率對構件的影響 8 2.3.1 柱構件 8 2.3.2 梁構件 8 2.3.3 版構件 9 2.3.4 牆構件 9 2.3.5完整結構物反應預測 9 2.4 TEASPA 3.1 塑鉸 10 2.4.1 TEASPA公式推演 10 2.4.2 TEASPA塑鉸驗證 12 第3章 實驗規劃 50 3.1 前言 50 3.2 試體設計 50 3.3 試體施作 51 3.3.1 前言 51 3.3.2 基礎施作 51 3.3.3 柱子施作 51 3.3.4 安裝應變計流程 52 3.4 試驗規劃 53 3.4.1 試體邊界條件 53 3.4.2 外力加載系統 53 3.4.3 輸入波 54 3.4.4 量測系統 54 3.4.4 試驗流程 55 第4章 實驗結果與討論 76 4.1 前言 76 4.2 材料試驗 76 4.2.1 混凝土 76 4.2.2 鋼筋 77 4.3 試體裂縫發展 78 4.4 位移計與Motion Capture量測數值 80 4.5 加載速度與軸壓量測數據 81 4.6 應變計量測數據 81 4.7 試體力與位移關係行為 82 4.7.1 遲滯迴圈與包絡線 82 4.7.2降伏強度、最大強度及初始勁度 83 4.7.3降伏位移、極限位移及韌性 83 第5章 程式模擬與分析 123 5.1 前言 123 5.2 動態成長因子 123 5.3 彎矩曲率分析與彎矩面積法 124 5.3.1 XTRACT軟體 124 5.3.2彎矩面積法 124 5.4 非線性靜力側推分析 127 5.5 力與位移曲線比較 127 第六章 結論與建議 157 6.1 結論 157 6.2 建議 157 參考文獻 158

    [1]林啟文、盧詩丁、陳文山(2012),「臺灣活動斷層分布圖 2012 年版說明書」,經濟部中央地質調查所特刊,第26號。
    [2]鄭世楠、葉永田、徐明同、辛在勤 (1999),「台灣十大災害地震圖集」,中央氣象局與中央研究院地球科學研究所,CWB-9-1999-002-9。
    [3]P. H. Bischoff & S. H. Perry (1991), “Compressive Behavior of Concrete at High Strain Rates”, Material and Structures, No. 24, pp. 425-450.
    [4]S.-W. Hong and H.-K. Kang (2016), “Dynamic Strength Properties of Concrete and Reinforcing Steel Subject to Extreme Loads”, ACI Structural Journal, Vol. 113, No. 5, pp. 983-995.
    [5]Y.-G. Cao, M.-Y. Liu, Y. Zhang, J. Hu, and S.-C Yang (2020), “Effect of Strain Rates on the Stress–Strain Behavior of FRP-Confined Pre-Damaged Concrete”, Materials, Vol. 13, No. 5, pp. 1078.
    [6]W. Suaris and P. Shah (1982), “Strain-Rate Effects in Fibre-Reinforced Concrete Subjected to Impact and Impulsive Loading”, Composites, Vol. 13, No. 2, pp. 153-159.
    [7]H. Bachmann (1993). ‘‘Die Massenträgheit in einem Pseudo-Stoffgesetz für Beton bei schneller Zugbeanspruchung’’ dissertation und Heft 19 der Schriftenreihe des Inst. für Massivbau und Baustofftechnologie, University Karlsruhe, Karlsruhe, Germany.
    [8]P. Forquin (2011), “Influence of Strain-Rate and Confining Pressure on the Shear Strength of Concrete”, Dynamic Behavior of Materials, Vol. 1, pp. 29-35.
    [9]X.-D. Chen, S.-X. Wu, J.-K. Zhou, Y.-Z. Chen, and A.-P. Qin (2013), “Effect of Testing Method and Strain Rate on Stress-Strain Behavior of Concrete”, Journal of Materials in Civil Engineering, Vol. 25, No. 11, pp. 1752-1761.
    [10]L. J. Malvar and J. E. Crawford (1998), “Dynamic Increase Factors for Steel Reinforcing Bars”, Twenty-Eighth DDESB Seminar, Orlando, FL.
    [11]W. A. Keenan and A. Feldman (1960), ” The Yield Strength of Intermediate Grade
    Reinforcing Bars under Rapid Loading”, AFSWC-TR-59-72, University of Illinois Urbana, Illinois.
    [12]M. Li and H.-N. Li (2012), “Effects of Strain Rate on Reinforced Concrete Structure under Seismic Loading”, Advances in Structural Engineering, Vol. 15, No. 3, pp. 461-475.
    [13]E. Cadoni, M. Dotta, D. Forni, and N. Tesio (2014), “High strain rate behaviour in tension of steel B500A reinforcing bar”, Materials and Structures, Vol. 48, No. 6, pp. 1803-1813. 
    [14]Unified Facilities Criteria (UFC) (2008), “Structures to Resist the Effects of Accidental Explosions”, UFC 3-340-02.
    [15]E. Gutierrez, G. Magonette and G. Verzeletti (1993), “Experimental Studies of Loading Rate Effects on Reinforced Concrete Columns”, Journal of Engineering Mechanics, Vol. 119, No. 5, pp. 887-904.
    [16]D.-B. Wang and G.-X. Fan (2016), “Effect of Strain Rate on Reinforced Concrete Columns”, Advances in Engineering Research, Vol. 112, pp. 473-477.
    [17]X. X. Zhang, G. Ruiz and R. C. Yu (2008), “Experimental Study of Combined Size and Strain Rate Effects on the Fracture of Reinforced Concrete”, Journal of Materials in Civil Engineering, Vol. 20, No. 8, pp. 544-551.
    [18]S. D. Adikary and B. Li, K. Fujikake (2012), “Dynamic Behavior of Reinforced Concrete Beams under Varying Rates of Concentrated Loading”, International Journal of Impact Engineering, No. 47, pp. 24-38.
    [19]S. D. Adikary and B. Li, K. Fujikake (2013), “Strength and Behavior in Shear of Reinforced Concrete Deep Beams under Dynamic Loading Conditions”, Nuclear Engineering and Design, Vol. 256, pp. 14-28.
    [20]S. D. Adikary and B. Li, K. Fujikake (2014), “Effects of High Loading Rate on Reinforced Concrete Beams”, ACI Structural Journal, Vol. 111, No. 3, pp. 651-660.
    [21]S.-Y. Xiao, J.-B. Li, and Y.-L. Mo (2017), “Effect of Loading Rate on Cyclic Behavior of Reinforced Concrete Beams”, Advances in Structural Engineering, Vol. 21, No. 7, pp. 990-1001.
    [22]H. Saito, A. Imamuw, M. Takeuchi, S. Okamoto, Y. Kasai ‘, and H. Tsubota, M. Yoshimura (1995), “Loading Capacities and Failure Modes of Various Reinforced-Concrete Slabs Subjected to High Speed Loading”, Nuclear Engineering and Design , Vol. 156, No. 1-2, pp. 277-286.
    [23]Y. Xiao, B. Li and K. Fujikake (2016), “Experimental Study of Reinforced Concrete Slabs under Different Loading Rates”, ACI Structural Journal, Vol. 113, No. 1, pp. 157-168.
    [24]N. Xu, B. Xu, X. Zeng, Z. Jiang and J.-M. Chen (2011), “Dynamic Load-Displacement Behavior of RC Shear Walls under Different Loading Rates: Tests and Simulations”, Advanced Materials Research , Vol. 163-167, pp. 1780-1785.
    [25]W. Ammann, P. Barr, C. Berriaud, J. Bobrowski, D. Chauvel, J. EIbl, F. K. Garas, E. Limberger, N. S. Ottosen, S. H. Perry, H. W. Reinhardt, E. Rudiger, G. Thielen (1988), “Concrete Structures under Impact and Impulsive Loading”, Comite Euro-International Du Beton (CEB). 
    [26]林瑞良,陳雯惠,劉郁芳,周德光,葉勇凱,趙書賢,郭俊翔,蕭輔沛,翁元滔,周中哲 (2020),「鋼筋混凝土建築之非線性反應歷時分析」,NCREE-20-001。
    [27]蕭輔沛,鍾立來,葉勇凱,簡文郁,沈文成,邱聰智,周德光,趙宜峰,翁樸文,楊耀昇,褚有倫,涂耀賢,柴駿甫,黃世建 (2013),「校舍結構耐震評估與補強技術手冊第三版」,NCREE-13-023。
    [28]邱聰智,蕭輔沛,鍾立來,翁健煌,李其航,劉建均,薛強,何郁姍,陳幸均,楊智斌,翁樸文,沈文成,涂耀賢,楊耀昇,李翼安,葉勇凱,黃世建 (2018),「臺灣結構耐震評估側推分析法(TEASPA V3.1)」,NCREE-18-015。
    [29]國家地震工程研究中心,https://www.ncree.narl.org.tw/about/laboratory/page/103
    [30]許育銘 (2019),「近斷層速度脈衝效應對鋼筋混凝土柱塑性鉸參數定義之研究」,碩士論文,國立成功大學土木工程學系研究所,臺南市。

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE