| 研究生: |
林奐彣 Lin, Huan-Wen |
|---|---|
| 論文名稱: |
超臨界二氧化碳對砂岩化學性質及礦物相之影響 Influence of supercritical carbon dioxide on the chemical characteristics and mineral facies of sandstone |
| 指導教授: |
簡錦樹
Jean, Jiin-Shuh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 地球科學系碩士在職專班 Department of Earth Sciences (on the job class) |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 53 |
| 中文關鍵詞: | 二氧化碳地質封存 、岩石-水-超臨界二氧化碳相互作用 、微量元素溶出 、礦 物相 、砂岩 |
| 外文關鍵詞: | carbon dioxide geological sequestration, the rock - water - supercritical CO2 interaction, dissolution of trace elements, mineral facies, sandstone |
| 相關次數: | 點閱:158 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究使用砂岩樣品模擬二氧化碳地質封存實驗,探討砂岩及地層水之化學性質及礦物相變化。評估二氧化碳地質封存後,儲存層(砂岩)與地層水間相互反應後有毒微量元素是否釋出於地層水中,而對地下水水質造成影響。砂岩主要礦物組成為石英(Quartz)、微斜長石(Microcline)、鈉長石(Albite)、伊萊石-蒙脫石(Illite - montmorillonite)、斜綠泥石(Clinochlore)、白雲母(Muscovite)等,經砂岩-水-超臨界二氧化碳相互反應後,由SEM / EDS儀器發現有矽酸鹽類礦物及硫化鐵(FeS)等次生礦物生成。實驗結果顯示砂岩加入含有鹽度26.3 ‰模擬之地層水與超臨界二氧化碳反應後,其中砂岩於浸泡40天及反應20天後之Cd濃度(63.4 μg/L)及Pb濃度(627 μg/L)超出國家主要飲用水標準(Cd為5 μg/L、Pb為15 μg/L);浸泡10、20、30、40天後,以及浸泡40天後反應20、80天後之Mn濃度分別為226 μg/L、201 μg/L、393 μg/L、75.6 μg/L、85.9 μg/L、113 μg/L超出國家二級飲用水標準(Mn為50 μg/L)。然而,砂岩加入未含有鹽度之模擬地層水與超臨界二氧化碳反應後,其中砂岩於浸泡40天後及反應20天後之Cd濃度(32.2 μg/L)及Pb濃度(85.3 μg/L)超出國家主要飲用水標準(Cd為5 μg/L、Pb為15 μg/L);浸泡10、20、40天後,以及浸泡40天後反應20、80天後之Mn濃度分別為202 μg/L、284 μg/L、92.1 μg/L、50.0 μg/L、67.7 μg/L超出國家二級飲用水標準(Mn為50 μg/L)。
This research aims at understanding the effects of chemical characteristics and mineral facies of sandstone and formation water from the simulation experiments of rock-water- supercritical CO2 interaction. This is to assess if the toxic trace elements can be dissolved and released into formation water from sandstone in the CO2 storage layer after CO2 geological sequastration, resulting in affecting of groundwater quality. The experimental results revealed that the concentrations of Cd and Pb in water exceed the national drinking primary standard as a result of sandstone- 26.3 ‰ salinity water- supercritical CO2 interaction after 40 d of sandstone immersion and 20 d of interaction. In addition, Mn concentration exceed the national drinking secondary standard after 40 d of sandstone immersion and 20 d and 80 d of interaction. Similarly, the concentrations of Cd and Pb in water exceed the national drinking primary standard and those of Mn in water exceed the national drinking secondary standard as a result of sandstone - salinity water- supercritical CO2 interaction after 40 d of sandstone immersion and 20 d and 80 d of interaction.
Bachu, Stefan, WD Gunter, and EH Perkins. 'Aquifer Disposal of Co 2: Hydrodynamic and Mineral Trapping', Energy Conversion and Management Vol. 35, No. 4, 269-279, 1994.
Baines, Shelagh J, and Richard H Worden. 'Geological Storage of Carbon Dioxide', Geological Society, London, Special Publications Vol. 233, No. 1, 1-6, 2004.
Chadwick, Andy, Rob Arts, Christian Bernstone, Franz May, Sylvain Thibeau, and Peter Zweigel. Best Practice for the Storage of Co2 in Saline Aquifers-Observations and Guidelines from the Sacs and Co2store Projects, British Geological Survey, 2008.
Gaus, Irina. 'Role and Impact of Co 2–Rock Interactions During Co 2 Storage in Sedimentary Rocks', International journal of greenhouse gas control Vol. 4, No. 1, 73-89, 2010.
Hitchon, Brian, WD Gunter, Thomas Gentzis, and RT Bailey. 'Sedimentary Basins and Greenhouse Gases: A Serendipitous Association', Energy Conversion and Management Vol. 40, No. 8, 825-843, 1999.
Karamalidis, Athanasios K, Sharon G Torres, J Alexandra Hakala, Hongbo Shao, Kirk J Cantrell, and Susan Carroll. 'Trace Metal Source Terms in Carbon Sequestration Environments', Environmental Science & Technology Vol. 47, No. 1, 322-329, 2012.
Kaszuba, John P, David R Janecky, and Marjorie G Snow. 'Experimental Evaluation of Mixed Fluid Reactions between Supercritical Carbon Dioxide and Nacl Brine: Relevance to the Integrity of a Geologic Carbon Repository', Chemical geology Vol. 217, No. 3, 277-293, 2005.
Metz, Bert, Ogunlade Davidson, Heleen De Coninck, Manuela Loos, and Leo Meyer. 'Carbon Dioxide Capture and Storage', 2005.
Oelkers, Eric H, Sigurdur R Gislason, and Juerg Matter. 'Mineral Carbonation of Co2', Elements Vol. 4, No. 5, 333-337, 2008.
Pruess, Karsten. 'Enhanced Geothermal Systems (Egs) Using Co 2 as Working Fluid—a Novel Approach for Generating Renewable Energy with Simultaneous Sequestration of Carbon', Geothermics Vol. 35, No. 4, 351-367, 2006.
Rempel, Kirsten U, Axel Liebscher, Wilhelm Heinrich, and Georg Schettler. 'An Experimental Investigation of Trace Element Dissolution in Carbon Dioxide: Applications to the Geological Storage of Co 2', Chemical geology Vol. 289, No. 3, 224-234, 2011.
U.S. EPA, Code of Federal Regulations, 40 CFR Part 141 and 143, EPA 816-F-09-0004, May 2009.
Xu, Tianfu, John A Apps, and Karsten Pruess. 'Numerical Simulation of Co 2 Disposal by Mineral Trapping in Deep Aquifers', Applied geochemistry Vol. 19, No. 6, 917-936, 2004.
Xu, Tianfu, John A Apps, and Karsten Pruess. 'Mineral Sequestration of Carbon Dioxide in a Sandstone–Shale System', Chemical geology Vol. 217, No. 3, 295-318, 2005.
Zheng, Liange, John A Apps, Yingqi Zhang, Tianfu Xu, and Jens T Birkholzer. 'On Mobilization of Lead and Arsenic in Groundwater in Response to Co 2 Leakage from Deep Geological Storage', Chemical geology Vol. 268, No. 3, 281-297, 2009.
張堯婷. '超臨界二氧化碳–水–長石系統之礦物及化學反應', 成功大學地球科學系學位論文, 1-96, 2011.
龍慧容. '二氧化碳− 水− 砂岩系統之反應實驗', 成功大學地球科學系學位論文, 1-115, 2012.
校內:2018-09-01公開