簡易檢索 / 詳目顯示

研究生: 葉博智
Yeh, Bo-Jhih
論文名稱: 氫鍵作用力與分子量對雙相與三相團聯共聚物混摻物相行為與結晶行為之影響
Effects of Hydrogen-Bonding Interactions and Molecular Weights on the Phase and Crystallization Behaviors of Binary and Ternary Block Copolymer Blends
指導教授: 羅介聰
Lo, Chieh-Tsung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 183
中文關鍵詞: 團聯共聚物混摻相行為結晶行為氫鍵
外文關鍵詞: block copolymer, blend, phase behavior, crystallization behavior, hydrogen bond
相關次數: 點閱:84下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討poly(styrene-block-ethylene oxide) (PS-b-PEO)與poly(styrene-block-acrylic acid) (PS-b-PAA)雙成份混摻系統之相行為與結晶行為,此外,我們亦研究PS-b-PEO混摻PS,再混摻對稱型PS-b-PAA,探討三成份混摻系統之相行為與結晶行為。無論在雙成份與三成份混摻系統中,大部分PAA皆會與PEO形成氫鍵,使PS-b-PEO與PS-b-PAA兩團聯共聚物相容性提高,然而隨著PS-b-PEO分子量與退火溫度的提高,氫鍵比例隨之下降。
    在雙成份混摻系統中,PS的體積分率和PS-b-PEO的分子量與PS-b-PAA的分子量之比值(r)可解釋整體混摻系統之相行為。在r值較小時,摻合物在較小PS體積分率時會形成柱狀結構,隨著r值變大,混摻物則需要較大之PS體積分率才會形成柱狀結構,造成此結果之原因與PS-b-PEO之界面曲率相關,而界面曲率與PS之體積分率有正相關關係,與柱狀微結構之半徑為負相關關係。較大之r值代表柱狀微結構之半徑較大,因此要改變界面曲率需要更大之PS體積分率。隨著r值變大,兩共聚物形成巨觀相分離,這是因為兩共聚物的分子量差距過大。
    在三成份混摻系統中亦可用PS體積分率與r值表示其相行為,相較於雙成份混摻系統,其在較小r值且PS體積分率大於0.7時,混摻物形成柱狀結構,然而三成份混摻系統則形成層狀結構,推測原因為混摻之PS-b-PAA因氫鍵而坐落於PS與PEO的界面上,使得每一個鍵結點在界面所佔面積變小,因此均聚物PS無法進入界面,而以不均勻的localized solubilization形式分佈於PS微相域的中間,因此無法有效增加界面曲率,因而仍維持層狀結構。與雙成份混摻系統相同的是,當r值過大則會發生巨觀相分離。此外,相圖出現特殊之柱狀與層狀兩相共存之結構,其原因為少量之PS-b-PAA無法使大量柱狀PS-b-PEO轉變為層狀,而是以層狀和柱狀之結構同時出現,因此需要更多之PS-b-PAA才能使混摻物結構轉變為層狀結構。
    在雙成份與三成份混摻系統中,結晶行為可用PS-b-PAA之混摻比例、莫耳分率和PEO鏈段分子量與PAA鏈段分子量之比值(α)解釋,α值愈大(PEO之鏈段越長)時,結晶行為愈不容易受到PAA鏈段的影響,推測其原因為PS-b-PAA皆坐落於PS與PEO之界面上,因此較長鏈段之PEO不會受到較短鏈段之PAA的氫鍵影響,因此在大α值時仍可結晶;在小α值時,則因PEO與PAA彼此鏈段長度接近,因此PEO受到與PAA的氫鍵影響,在添加少量PS-b-PAA時即無法結晶。

    We investigated the phase and crystallization behaviors of binary blends composed of poly(styrene-block-ethylene oxide) (PS-b-PEO) and poly(styrene-block-acrylic acid) (PS-b-PAA) and ternary blends comprising PS-b-PEO, PS homopolymer, and PS-b-PAA. Most PAA formed hydrogen bonds with PEO in both binary and ternary blends, thus increasing the miscibility of PS-b-PEO and PS-b-PAA.
    The phase behavior of the ternary blends was affected by the total PS volume fraction and r. In contrast to the binary blends in which a cylindrical structure was formed at small r values and the total PS volume fractions higher than 0.7, the ternary blends exhibited a lamellar structure at the similar conditions. When PS-b-PAA was blended with PS-b-PEO and PS, PS-b-PAA was localized at the interface between the PS and PEO microdomains because of the hydrogen-bonding interaction. This reduced the interfacial area per junction point, causing the segregation of PS homopolymers into the middle of the PS microdomain. The localized solubilization could not effectively increase the interfacial curvature, and thus a lamellar structure was retained. Similarly to the binary blends, macrophase separation occurred in the ternary blends when the r value was too large.
    The crystallization behavior of the binary and ternary blends depended on the content of PS-b-PAA and the molecular weight ratio between the PEO block and the PAA block (α). When α was large (long PEO chains), the PEO crystallization was hardly affected by the PAA chains. By contrast, almost all PEO chains formed hydrogen bonds with PAA at small α.

    摘要 I Extend abstract III 致謝 X 目錄 XI 表目錄 XIV 圖目錄 XX 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 第二章 文獻回顧 3 2.1 共聚物(copolymer) 3 2.2 團聯共聚物的自組裝 4 2.2.1 團聯共聚物的微相分離 4 2.2.2 團聯共聚物/均聚物混摻 9 2.2.2.1 A-b-B/h-B型團聯共聚物/均聚物混摻 9 2.2.2.2 A-b-B/h-C型團聯共聚物/均聚物混摻 13 2.2.3 高分子混摻之氫鍵作用力 15 2.2.4 結晶性團聯共聚物之微相分離 20 2.3 高分子結晶 21 2.3.1 等溫結晶動力學 23 2.3.2 非等溫結晶動力學 25 第三章 實驗 32 3.1 藥品 32 3.2 分析儀器 34 3.3 實驗步驟 35 3.4 實驗流程圖 39 第四章 結果與討論 40 4.1 雙成份混摻系統 40 4.1.1 PS-b-PEO (Mn = 21500-b-20000 g/mol)/PS-b-PAA (Mn = 5200-b-4000 g/mol)混摻系統 40 4.1.2 PS-b-PEO (Mn = 10000-b-21000 g/mol)/PS-b-PAA (Mn = 5200-b-4000 g/mol)混摻系統 52 4.1.3 PS-b-PEO (Mn = 20500-b-9500 g/mol)/PS-b-PAA (Mn = 5200-b-4000 g/mol)混摻系統 60 4.1.4 PS-b-PEO (Mn = 10000-b-11500 g/mol)/PS-b-PAA (Mn = 3300-b-20000 g/mol)混摻系統 69 4.1.5 PS-b-PEO (Mn = 21500-b-20000 g/mol)/PS-b-PAA (Mn = 3300-b-20000 g/mol)混摻系統 78 4.1.6 PS-b-PEO (Mn = 40000-b-35000 g/mol)/PS-b-PAA (Mn = 3300-b-20000 g/mol)混摻系統 86 4.1.7 PS-b-PEO (Mn = 10000-b-21000 g/mol)/PS-b-PAA (Mn = 3300-b-20000 g/mol)混摻系統 94 4.1.8 總結 103 4.2 三成份混摻系統 106 4.2.1 PS-b-PEO (Mn = 10000-b-11500 g/mol)/PS (Mn = 5200 g/mol)/PS-b-PAA (Mn = 5200-b-4000 g/mol)混摻系統 106 4.2.1.1 PS-b-PEO (Mn = 10000-b-11500 g/mol)/PS (Mn = 5200 g/mol)(70/30)/PS-b-PAA (Mn = 5200-b-4000 g/mol)混摻系統 110 4.2.1.2 PS-b-PEO (Mn = 10000-b-11500 g/mol)/PS (Mn = 5200 g/mol)(60/40)/PS-b-PAA (Mn = 5200-b-4000 g/mol)混摻系統 120 4.2.2 PS-b-PEO (Mn = 21500-b-20000 g/mol)/PS (Mn = 5200 g/mol)/PS-b-PAA (Mn = 5200-b-4000 g/mol)混摻系統 129 4.2.3 PS-b-PEO (Mn = 40000-b-35000 g/mol)/PS (Mn = 5200 g/mol)/PS-b-PAA (Mn = 5200-b-4000 g/mol)混摻系統 141 4.2.4 PS-b-PEO (Mn = 10000-b-21000 g/mol)/PS (Mn = 5200 g/mol)/PS-b-PAA (Mn = 5200-b-4000 g/mol)混摻系統 153 4.2.5 PS-b-PEO (Mn = 20500-b-9500 g/mol)/PS (Mn = 5200 g/mol)/PS-b-PAA (Mn = 5200-b-4000 g/mol)混摻系統 163 4.2.6 總結 175 第五章 結論 178 第六章 參考文獻 180

    [1]H. Tanake, H. Hasegawa, and T. Hashimoto, "Ordered structure in mixtures of a block copolymer and homopolymers. 1. Solubilization of low molecular weight homopolymers," Macromolecules, 24, 240-251, 1991.
    [2]T. Hashimoto, H. Tanaka, and H. Hasegawa, "Ordered structure in mixtures of a block copolymer and homopolymers. 2. Effects of molecular weights of homopolymers," Macromolecules, 23, 4378-4386, 1990.
    [3]W. C. Chen, S. W. Kuo, C. H. Lu, U. S. Jeng, and F. C. Chang, "Self-assembly structures through competitive interactions of crystalline−amorphous diblock copolymer/homopolymer blends: Poly(ε-caprolactone-b-4-vinyl pyridine)/Poly(vinyl phenol)," Macromolecules, 42, 3580-3590, 2009.
    [4]T. Hashimoto, K. Yamasaki, S. Koizumi, and H. Hasegawa, "Ordered structure in blends of block copolymers. 1. Miscibility criterion for lamellar block copolymers," Macromolecules, 26, 2895-2904, 1993.
    [5]D. Yamaguchi and T. Hashimoto, "A phase diagram for the binary blends of nearly symmetric diblock copolymers. 1. Parameter space of molecular weight ratio and blend composition.," Macromolecules, 34, 6495-6505, 2001.
    [6]F. S. Bates, "Polymer-polymer phase behavior," Science, 251, 898-905, 1991.
    [7]S. Krause, "Polymer-polymer miscibility," Pure and Applied Chemistry, 58, 1553-1560, 1986.
    [8]N. Sakamoto and T. Hashimoto, "Order-disorder transition of low molecular weight polystyrene-block-polyisoprene. 1. SAXS analysis of two characteristic temperatures," Macromolecules, 28, 6825-6834, 1995.
    [9]M. W. Matsen and F. S. Bates, "Unifying weak- and strong-segregation block copolymer theories," Macromolecules, 29, 1091-1098, 1996.
    [10]S. B. Darling, "Directing the self-assembly of block copolymers," Progress in Polymer Science, 32, 1152-1204, 2007.
    [11]L. Zhu, S.Z.D. Cheng, B.H. Calhoun, Q. Ge, R. P. Quirk, E.L. Thomas, et al., "Phase structures and morphologies determined by self-organization, vitrification, and crystallization: confined crystallization in an ordered lamellar phase of PEO-b-PS diblock copolymer," Polymer, 42, 5829-5839, 2001.
    [12]M. W. Matsen and F. S. Bates, "Origins of complex self-assembly in block copolymers," Macromolecules, 29, 7641-7644, 1996.
    [13]C. Luo, X. Han, Y. Gao, H. Liu, and Y. Hu, "Crystallization behavior of “wet brush” and “dry brush” blends of PS-b-PEO-b-PS/h-PEO," Journal of Applied Polymer Science, 113, 907-915, 2009.
    [14]J. Y. Lee, P. C. Painter, and M. M. Coleman, "Hydrogen bonding in polymer blends. 3. Blends involving polymers containing methacrylic acid and ether groups," Macromolecules, 21, 346-354, 1988.
    [15]R. V. Castillo, M. L. Arnal, A. J. Müller, I. W. Hamley, V. Castelletto, H. Schmalz, et al., "Fractionated crystallization and fractionated melting of confined PEO microdomains in PB-b-PEO and PE-b-PEO diblock copolymers," Macromolecules, 41, 879-889, 2008.
    [16]C. E. Carraher, Seymour/Carraher's Polymer Chemistry: Sixth Edition: CRC Press, 2003.
    [17]D. Mileva, R. Androsch, E. Zhuravlev, C. Schick, and B. Wunderlich, "Homogeneous nucleation and mesophase formation in glassy isotactic polypropylene," Polymer, 53, 277-282, 2012.
    [18]E. Ergoz, J. G. Fatou, and L. Mandelkern, "Molecular weight dependence of the crystallization kinetics of linear polyethylene. I. Experimental results," Macromolecules, 5, 147-157, 1972.
    [19]A. T. Lorenzo, M. L. Arnal, J. Albuerne, and A. J. Müller, "DSC isothermal polymer crystallization kinetics measurements and the use of the Avrami equation to fit the data: guidelines to avoid common problems," Polymer Testing, 26, 222-231, 2007.
    [20]M. Avrami, "Kinetics of phase change. I General theory," The Journal of chemical physics, 7, 1103-1112, 1939.
    [21]M. Avrami, "Kinetics of phase change. II Transformation‐time relations for random distribution of nuclei," The Journal of chemical physics, 8, 212-224, 1940.
    [22]M. Avrami, "Granulation, phase change, and microstructure kinetics of phase change. III," The Journal of chemical physics, 9, 177-184, 1941.
    [23]J. N. Hay, "Application of the modified avrami equations to polymer crystallisation kinetics," British Polymer Journal, 3, 74-82, 1971.
    [24]M. L. D. Lorenzo and C. Silvestre, "Non-isothermal crystallization of polymers," Progress in Polymer Science, 24, 917-950, 1999.
    [25]T. Ozawa, "Kinetics of non-isothermal crystallization," Polymer, 12, 150-158, 1971.
    [26]A. Jeziorny, "Parameters characterizing the kinetics of the non-isothermal crystallization of poly(ethylene terephthalate) determined by d.s.c.," Polymer, 19, 1142-1144, 1978.
    [27]T. Liu, Z. Mo, S. Wang, and H. Zhang, "Nonisothermal melt and cold crystallization kinetics of poly(aryl ether ether ketone ketone)," Polymer Engineering and Science, 37, 568-575, 1997.
    [28]M. Liu, Q. Zhao, Y. Wang, C. Zhang, Z. Mo, and S. Cao, "Melting behaviors, isothermal and non-isothermal crystallization kinetics of nylon 1212," Polymer, 44, 2537-2545, 2003.
    [29]F. Court and T. Hashimoto, "Morphological studies of binary mixtures of block copolymers. 2. Chain organization of long and short blocks in lamellar microdomains and its effect on domain size and stability.," Macromolecules, 35, 2566-2575, 2002.
    [30]C. Y. Chu, H. L. Chen, M. S. Hsiao, J. H. Chen, and B. Nandan, "Crystallization in the binary blends of crystalline-amorphous diblock copolymers bearing chemically different crystalline block," Macromolecules, 43, 3376-3382, 2010.
    [31]B. Wunderlich, Macromolecular physics vol. 3. New York: Academic Press, 1980.
    [32]P. Huyskens, G. Groeninckx, and P. Vandevyvere, "What rules the melting point of semi-crystalline polymers?," Bulletin des Sociétés Chimiques Belges, 99, 1011-1017, 1990.
    [33]H. L. Chen, S. C. Hsiao, T. L. Lin, K. Yamauchi, H. Hasegawa, and T. Hashimoto, "Microdomain-tailored crystallization kinetics of block copolymers," Macromolecules, 34, 671-674, 2001.
    [34]H. L. Chen, J. C. Wu, T. L. Lin, and J. S. Lin, "Crystallization kinetics in microphase-separated ooly(ethylene oxide)-block-poly(1,4-butadiene)," Macromolecules, 34, 6936-6944, 2001.
    [35]A. J. Müller, V. Balsamo, M. L. Arnal, T. Jakob, H. Schmalz, and V. Abetz, "Homogeneous nucleation and fractionated crystallization in block copolymers," Macromolecules, 35, 3048-3058, 2002.
    [36]J. J. Maurer, D. J. Eustace, and C. T. Ratcliffe, "Thermal Characterization of Poly(acrylic acid)," Macromolecules, 20, 196-202, 1987.
    [37]N. V. Salim, N. Hameed, T. L. Hanleyb, and Q. Guo, "Microphase separation induced by competitive hydrogen bonding interactions in semicrystalline triblock copolymer/homopolymer complexes," Soft Matter, 9, 6176-6184, 2013.
    [38]R. M. Michell and A. J. Müller, "Confined crystallization of polymeric materials," Progress in Polymer Science, 54, 183-213, 2016.
    [39]R. J. Roe, Methods of X-ray and Neutron Scattering in Polymer Science: Oxford University Pres, 2000.
    [40]莊柏筠, "分子作用力與分子量對團聯共聚物混摻物相行為及結晶行為的影響," 碩士論文, 化學工程學系, 國立成功大學, 2017.
    [41]K. I. Winey, E. L. Thomas, and L. J. Fetters, "Ordered morphologies in binary blends of diblock copolymer and homopolymer and characterization of their intermaterial dividing surfaces.," The Journal of Chemical Physics, 95, 9367-9375, 1991.
    [42]M. W. Matsen, "Phase behavior of block copolymer/homopolymer blends," Macromolecules, 28, 5765-5773, 1995.
    [43]V. Mishra, S. Hur, E. W. Cochran, G. E. Stein, G. H. Fredrickson, and E. J. Kramer, "Symmetry transition in thin films of diblock copolymer/homopolymer blends," Macromolecules, 43, 1942-1949, 2010.
    [44]P. Padmanabhan, F. J. M.-Veracoechea, J. C. Araque, and F. A. Escobedo, "A theoretical and simulation study of the self-assembly of a binary blend of diblock copolymers," The Journal of Chemical Physics, 136, 234905, 2012.
    [45]H. Takeshita, Y. J. Gao, T. Natsui, E. Rodriguez, M. Miya, K. Takenaka, et al., "Formation of phase structure and crystallization behavior in blends containing polystyrene-polyethylene block copolymers," Polymer, 48, 7660-7671, 2007.
    [46]C. Daniel, I. W. Hamley, W. Mingvanish, and C. Booth, "Effect of shear on the face-centered cubic phase in a diblock copolymer gel," Macromolecules, 33, 2163-2170, 2000.
    [47]W. Lee, H. L. Chen, and T. L. Lin, "Correlation between crystallization kinetics and microdomain morphology in block copolymer blends exhibiting confined crystallization," Journal of Polymer Science Part B: Polymer Physics, 40, 519-529, 2002.

    無法下載圖示 校內:2023-08-28公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE