簡易檢索 / 詳目顯示

研究生: 陳品豪
Chen, Pin-Hao
論文名稱: 臺灣西南部泥岩斷層材料特性與潛移行為之研究
Study on the geomaterial characteristics and creep behavior of mudstone faults in southwestern Taiwan
指導教授: 陳燕華
Chen, Yen-Hua
學位類別: 碩士
Master
系所名稱: 理學院 - 地球科學系
Department of Earth Sciences
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 170
中文關鍵詞: 古亭坑泥岩旗山斷層車瓜林斷層斷層材料顯微組構水-岩反應
外文關鍵詞: Gutingkeng mudstone, Chishan Fault, Chegualin Fault, Fault materials, Microstructure, Water-rock interaction
相關次數: 點閱:38下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究聚焦於國道三號中寮隧道北口之古亭坑層泥岩區,該區域受旗山斷層以及車瓜林斷層兩條具有活動性的逆斷層影響,導致中寮隧道與周遭高架橋路段常毀損與破壞。根據前人研究顯示,此區域之變形可能與斷層潛移作用有關,並指示該現象與泥貫入體、背衝盲斷層發育、板塊擠壓之褶皺-逆衝作用還有泥岩組成材料特性有關,並造成高度之變形量。本研究將從微觀角度切入,針對斷層周遭岩石與礦物進行特性分析、顯微組構觀察以及水(流體)-岩石反應實驗,旨在深入了解該區域的材料組成、岩石含水量及其變化趨勢,探討流體對岩石之影響與反應機制,並進一步揭示斷層的潛移機制、沉積環境之變化、區域構造應力來源、變形模式及防災預警之指標因子。
    礦物與岩石特性分析結果顯示,泥岩的組成性質主導岩體之機械強度與行為,如:石英與黏土礦物之含量、具低摩擦係數礦物之空間分布、流體之影響…等。掃描式電子顯微鏡觀察結果顯示黃鐵礦存在多期生長或氧化現象,長石及黏土礦物和不同的碳酸鹽類礦物間,則有相互置換的關係,這些證據表明流體參與,並指示可能與斷層週期性的潛移有關。透過光學顯微鏡、掃描式電子顯微鏡、斷層掃描等分析,可觀察樣品中微觀裂隙之發育情況,並推測出其所受之最大主應力方向。研究結果顯示,靠近旗山斷層處有著拉張應力源,此可能另有其他因素所導致。水-岩反應實驗結果表明,鹵水中鈉濃度越低則越利於石英溶解及黏土礦物生成。因此,在鹵水鈉濃度較低的旗山斷層處,其岩體機械強度較低,使得該區域的垂直位移量及水平位移量都較為顯著。綜合來看,本研究發現水-岩間的流體化學變化是影響中寮隧道北口附近岩體變形的主因之一。該區域的變形作用係由1區域擠壓、2泥岩材料特性、3高壓流體和4流體化學等因素綜合控制,並造就斷層週期性之潛移行為。

    This study focuses on the north entrance of the Chungliao Tunnel on National Freeway No.3 in southwestern Taiwan. According to previous research, the deformation in this area might be related to the creeping of Chishan Fault and Chegualin Fault, and implied that factors such as mud diapirs, the development of backthrust blind fault, fold-thrust belts due to regional compression, and even the geomaterial properties of the mudstone composition might contribute to the high deformation rate through the GPS observation. This study performed detailed experiments on rock and mineral characteristics around the fault zones, the microstructure investigation, and water(fluid)-rock interactions from a microscopic perspective. It aims to investigate the material composition of the study area, the water content of rocks and its trends, the influence of fluids correlated with reaction mechanisms of rocks, fault creep models, changes in the sedimentary environment, sources of regional tectonic stress, deformation mechanisms, and referring indicators for disaster prevention and early warning.
    Research results indicated that the fluid chemistry between fluid and rock was one of the primary factors affecting the deformation of the rock layers near the north entrance of the Chungliao Tunnel. Four factors controlled the deformation of this area: 1 regional compression, 2 the properties of mudstone, 3 high-pressure fluids, and 4 fluid chemistry. These factors contributed to the periodic creep of the fault.

    中文摘要 Ⅰ Extended Abstract Ⅱ 誌謝 Ⅵ 目錄 Ⅶ 表目錄 Ⅺ 圖目錄 Ⅻ 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 1 第二章 文獻回顧 5 2.1 臺灣西南部地體架構 5 2.2 區域地質背景 6 2.2.1 古亭坑層 6 2.2.2 烏山層 7 2.2.3 旗山斷層 7 2.2.4 車瓜林斷層 9 2.3 斷層材料特性 11 2.4 泥岩組成與力學性質 14 2.5 臺灣西南部泥火山與泥貫入體 15 2.5.1 泥火山與泥貫入體形成機制 17 2.5.2 泥火山與泥貫入體物質特性 19 2.6 斷層潛移機制 20 2.7 車瓜林—旗山斷層變形因素探討 22 2.7.1 區域擠壓 22 2.7.2 泥貫入體 24 2.7.3 背衝斷層 25 2.7.4 材料特性 25 2.7.5 流體因素 26 第三章 研究方法與實驗儀器 27 3.1 實驗樣品與採樣點 27 3.2 實驗流程與樣品製備 31 3.2.1 黏土礦物萃取與順向試片製作 32 3.2.2 伊萊石結晶度與疊型分析 33 3.2.3 含水率試驗與分析 36 3.2.4 最大主應力方向推導 36 3.2.5 原位升溫X光繞射實驗 37 3.2.6 水-岩反應實驗 38 3.3 實驗儀器與原理 39 3.3.1 X光粉末繞射儀 39 3.3.2 同步繞射-X光繞射儀 40 3.3.3 同步繞射-微米級斷層掃描 42 3.3.4 光學顯微鏡 43 3.3.5 掃描式電子顯微鏡 43 3.3.6 同步熱分析儀 44 3.3.7 傅立葉紅外光譜儀 44 3.3.8 感應耦合電漿光學放射光譜儀 46 第四章 實驗結果與討論 47 4.1 礦物相組成 47 4.1.1 主要礦物相 47 4.1.2 次要礦物相 48 4.1.3 黏土礦物半定量 49 4.1.4 伊萊石結晶度分析 51 4.1.5 伊萊石疊型分析 52 4.2 含水率分析 54 4.2.1 巨觀含水率 54 4.2.2 微觀含水率 54 4.3 顯微組構觀察 59 4.3.1 石英與長石 59 4.3.2 碳酸鹽類礦物 61 4.3.3 黏土礦物 63 4.3.4 硫化物與硫酸鹽類礦物 67 4.3.5 重礦物 74 4.3.6 碳物質 77 4.3.7 裂隙與最大主應力方向分布 78 4.4 原位X光繞射升溫實驗 86 4.5 水-岩反應實驗 88 4.5.1 礦物相組成分析 88 4.5.2 流體主要元素分析 90 第五章 綜合論述 94 5.1 研究區域材料組成與特性 94 5.2 含水量之變化 95 5.3 水-岩反應機制探討 95 5.3.1 分析數據討論 95 5.3.2 水-岩反應路徑 98 5.3.3 水-岩交互作用之隱示 106 5.4 水的影響與來源 106 5.5 斷層潛移機制 109 5.6 沉積環境變化 111 5.7 區域應力源、地體架構與變形模型 113 5.7.1 區域構造推論 113 5.7.2 區域變形模型 118 5.8 防災預警指標 120 第六章 結論與建議 120 6.1 結論 121 6.2 未來建議 123 第七章 參考文獻 125 附錄 149

    中國石油公司臺灣油礦探勘總處 (1989)。台南幅,比例尺十萬分之一地質圖。中國石油公司出版。
    王建智 (2012) 中寮山附近軟岩地盤變動模擬之研究。國立成功大學土木工程研究所碩士論文,共99頁。
    王聖宗 (2014) 高雄燕巢地區之古亭坑層鈣質超微化石生物地層學的研究。中國文化大學地學研究所地質組碩士論文,共68頁。
    王鑫 (1988) 泥岩惡地地景保留區之研究。行政院農業委員會與台灣大學地理學系合作計畫,第004號,共66頁。
    王鑫、徐美玲、楊建夫 (1988) 台灣泥火山地形景觀。臺灣省立博物館年刊,第31卷,第31-49頁。
    衣德成 (2004) 車籠埔斷層帶組構特性與膨潤石-伊利石礦物相轉變之研究。國立成功大學地球科學研究所碩士論文,共118頁。
    吳天偉 (1999) 由沉積岩學及古生態學分析高雄半屏山石灰岩體之生成過程。國立臺灣大學地質學研究所碩士論文,共183頁。
    吳季芹 (2023) 車瓜林斷層至中寮隧道間泥岩區之顯微組構及其大地應力之研究。國立成功大學地球科學系碩士論文,共98頁。
    吳榮章、梅文威 (1992) 高雄縣旗山至鳳山地區生物地層與古沉積環境研究。經濟部中央地質調查所特刊,第6號,第263-295頁。
    宋國城、陳力、陳彥傑 (2004) 有關旗山斷層的一些新觀察。地質,第23卷,第3期,第31-40頁。
    李宜瑄 (2021) 有線與無線反射震測法於泥貫入體區域之施測與結果比較。國立中正大學地震研究所碩士論文,共96頁。
    李健宏、詹佩臻、吳亮均、林銘郎 (2018) 跨斷層國道三號田寮3號橋與中寮隧道北口段變形機制。中國土木水利工程學刊,第三十卷,第一期,第1-10頁。
    李德河、楊沂恩、吳建宏、廖正傑、陳柏穎 (2008) 泥岩地區護坡工法研究。地工技術,第117期,第35-47頁。
    李錫堤、康耿豪、鄭錦桐、廖啟雯 (2000) 921集集大地震之地表破裂及地盤變形現象。地工技術,第81期,第5-16頁。
    李耀昌、陳慶曰 (2005) 同步輻射紅外光譜影像技術應用與發展。國家同步輻射研究中心簡訊,57卷,第8-11頁。
    阮國桃 (2023) 台灣西南部滾水坪的構造活動性和泥火山機制。國立中央大學應用地質研究所碩士論文,共115頁。
    周泓群 (2012) 旗山斷層於海外延伸:轉換拉張機制之探討。國立臺灣大學海洋研究所碩士論文,共80頁。
    林佳勳 (2021) 利用數值模型探討中寮隧道北口之泥岩變形機制與構造演化。國立中正大學地球與環境科學系地震學碩士班論文,共91頁。
    林奉聖 (2006) 高雄旗山斷層之地殼變形模式研究。國立成功大學地球科學系專班碩士論文,共97頁。
    林宗儀 (1990) 台灣南部古亭坑層中砂岩之沈積學。國立中山大學海洋地質研究所碩士論文,共120頁。
    林俊全 (1995) 泥岩邊坡發育模式之研究。地景保育通訊,第3期,第7-9頁。
    林啓文、劉彥求、周稟珊、林燕慧 (2021) 臺灣活動斷層調查的近期發展。經濟部中央地質調查所彙刊,第三十四號,第1-40頁。
    林啟文 (2013) 旗山-五萬分之一臺灣地質圖說明書圖幅第五十六號。經濟部中央地質調查所出版。
    林啟文、陳文山、劉彥求、陳柏村 (2009) 臺灣東部與南部的活動斷層。經濟部中央地質調查所特刊,第二十三號,共194頁。
    林啟文、游鎮源、洪國騰、周稟珊 (2012) 臺灣南部臺南─高雄泥岩區的地質構造研究. 經濟部中央地質調查所彙刊,第二十五號,第143-174頁。
    施泉賢 (2020) 台灣南部成長型泥火山之震測證據。國立中正大學地震研究所碩士論文,共65頁。
    洪崇勝, 陳國航, 林俊宏, 曾鐘億, 王詠絢, 費立沅, 鐘三雄, 陳松春, 陳柏淳, 魏正岳, & 王錦昌 (2016) 臺灣西南外海天然氣水合物潛在賦存區沉積物之岩石磁學性質。經濟部中央地質調查所特刊,第三十號,第89-122頁。
    郁靜慧 (2010) 台灣西南部泥貫入體構造特性研究。國立中正大學地球與環境科學研究所碩士論文,共115頁。
    原振維、黃旭燦、周定芳、吳榮章、盧東郎 (1987) 臺灣南部高壓層之地質研究。探採研究彙報,第10期,第1-27頁。
    孫立威 (2018) 利用重力資料探討台灣西南部構造。國立中央大學地球科學系碩士論文,共73頁。
    耿文溥 (1981) 臺南以東丘陵區之地質。經濟部中央地質調查所彙刊,第1號,第1-31頁。
    羅偉、劉佳玫、郭人瑋、王玉瑞、李文正 (2010) 台灣中央山脈能高越嶺路伊萊石結晶度值之初步探討。台灣鑛業,第62卷,第1期,第1-13頁。
    張李群 (2014) 以大地測量資料進行龍船斷層與旗山斷層行為分析之研究。國立成功大學測量及空間資訊學系碩士論文,共125頁。
    張恭豪 (2015) 台灣西南部前陸盆地初始發育的沉積環境演化。國立成功大學地球科學系碩士論文,共70頁。
    粘佑亘 (2021) 臺灣西南部古亭坑層泥岩之巨觀與微觀磁學性質之研究。國立成功大學地球科學系碩士論文,共166頁。
    莊承家 (2023) 臺灣西南部車瓜林斷層之岩石及變形機制。國立中央大學應用地質研究所碩士論文,共111頁。
    郭鶯萍 (2017) 探討泥岩區對臺灣西南部褶皺逆衝帶的高異常變形量之影響。國立臺灣大學地質科學研究所碩士論文,共151頁。
    陳文山、黃能偉、楊志成 (2011) 臺灣西南部更新世沈積層序特性與前陸盆地演化。經濟部中央地質調查所特刊,第25號,第1-38頁。
    陳俊价 (2008) 古亭坑層泥岩含水量對力學特性影響之研究。國立成功大學土木工程研究所碩士論文,共147頁。
    陳勇昇 (2015) 藉由大地測量資料探討龍船斷層與旗山斷層之間震變形特性。國立成功大學測量及空間資訊學系碩士論文,共94頁。
    陳柏村 (2005) 旗山斷層南段變形特性研究。國立成功大學地球科學研究所碩士論文, 共138頁。
    陳柏村、林啟文、江婉綺、劉彥求、林慶偉 (2009) 臺灣南部旗山斷層的構造特性研究。經濟部中央地質調查所彙刊,第22號,第63-98頁。
    陳國隆、王吉杉、楊智堯、吳文隆、蕭秋安 (2018) 月世界地區隧道遭遇斷層之變位監測案例探討。中華技術,第119期,第106-121頁。
    陳華玟、吳樂群、錢憲和 (1994) 臺灣南部高雄地區早更新世半屏山石灰岩與古亭坑層的接觸關係。經濟部中央地質調查所特刊,第8號,第101-119頁。
    陳新翰 (2021) 台灣西南部泥岩車瓜林斷層之岩石特徵與隱示。國立中央大學應用地質研究所碩士論文,共124頁。
    陳肇夏、王京新、鐘三雄 (2009) 鉀雲母結晶度在臺灣雪山及中央山脈地層與構造研究上之應用。經濟部中央地質調查所特刊,第8號,第261-284頁。
    鳥居敬造 (1932) 臺南州新化油田調查報告及地質圖。比例尺三萬分之一。臺灣總督府殖產局,第609號,共29頁。
    報導者 (2022) 【918池上地震凸顯的長期危機】政府漠視斷層研究、開發政策脫鉤,連台積電都向橋科說「No」。財團法人報導者文化基金會出版。https://www.twreporter.org/a/taiwan-earthquake-chegualin-fault-zone-and-tsmc.
    曾威豪 (2006) 台灣西南海域海底泥火山之分布特徵與噴發機制。國立臺灣大學海洋研究所碩士論文,共62頁。
    程天馨 (2020) 利用巨觀與微觀方式探討不同岩性在大規模崩塌下之機制。國立成功大學地球科學系碩士論文,共163頁。
    黃家俊 (2015) 臺灣南部龍船斷層北段泥岩與斷層泥之電子顯微及X光極圖繞射研究。國立成功大學地球科學系碩士論文,共180頁。
    楊名、景國恩、楊智堯、吳宗翰、吳文隆、蕭秋安 (2018) 廣域大地變位之利用GPS監測分析與解算—以國道3號田寮3號高架橋及中寮隧道大地變位監測為例。中華技術期刊,第119期,第122頁-第135頁。
    楊燦堯 (2003) 台灣的泥火山。臺大校友雙月刊,第29期,第8-11頁。
    楊燦堯 (2006) 進行曲-泥火山噴氣所帶來的地底訊息。地質,第25卷,第2期,第30-36頁。
    葉高華 (2003) 由流體地球化學探討台灣泥火山的成因。國立台灣大學海洋研究所碩士論文,共61頁。
    董姿利 (2002) 臺灣西南部新第三紀泥岩中硫化鐵礦物之岩象和古地磁隱示。國立成功大學地球科學系博士論文,共73頁。
    詹博舜 (2001) 由穩定氫氧同位素探討台灣西南活動構造帶泉水之來源。國立臺灣大學地質科學研究所碩士論文,共80頁。
    趙家賢 (2019) 以2015至2018年大地測量資料分析車瓜林斷層地表變形及橫跨斷層之高架橋結構位移。國立成功大學測量及空間資訊學系碩士論文,共73頁。
    趙鴻椿、游鎮烽 (2010) 臺灣泥火山的氣體成分及其溫室氣體通量。國立臺灣博物館學刊,第63卷,第2期,第43-66頁。
    鄢運璇 (2021) 以礦物特徵及顯微組構研究「臺灣國道三號中寮隧道與田寮高架橋」之變形機制。國立成功大學地球科學系碩士論文,共151頁。
    劉育良 (2023) 斜移斷層潛移錯動對高架橋樁基礎性能之影響評估。國立臺灣大學土木工程學系碩士論文,共137頁。
    劉彥求、林啟文 (2019) 臺灣南部車瓜林斷層的構造特性研究。經濟部中央地質調查所特刊,第34號,第53-82頁。
    劉麒 (1992) 臺灣西南部高雄地區泥火山物質與其鄰近泥岩之力學行為比較。國立臺灣大學地質研究所碩士論文,共102頁。
    蔡金郎 (1984) 臺灣西南部泥岩層礦物等之研究。行政院國家科學委員會計畫報告,第6-11頁。
    魯曜銓 (2023) 利用精密水準資料解析現今台灣西南部泥岩區的垂直地表變形特性。國立成功大學測量及空間資訊學系碩士論文,共201頁。
    謝尊堯 (2020) 利用2016-2019年之大地測量資料探討車瓜林斷層及其西延構造線形之間震變形特性。國立成功大學測量及空間資訊學系碩士論文,共104頁。
    顏富士、蔡鎰輝 (1985) 臺灣西南部主要泥岩坡地所含粘土之物化特性研究。鑛冶,第29卷,第3期,第102-114頁.
    藺于鈞 (2019) 台灣西南部中寮隧道北端旗山與龍船斷層帶構造特性研究。國立中央大學應用地質研究所碩士論文,共141頁。
    饒瑞鈞、胡植慶、李元希 (2008) 地震地質與地變動潛勢分析:地變動監測分析(1/4)。 經濟部中央地質調查所報告,第96-11號,共161頁。
    Abad, I., & Nieto, F. (2007). Physical meaning and applications of the illite Kübler index: measuring reaction progress in low-grade metamorphism. Diagenesis and Low-Temperature Metamorphism, Theory, Methods and Regional Aspects, Seminarios. Sociedad Espanola: Sociedad Espanola Mineralogia, 53-64.
    Angelier, J., Chu, H. T., Lee, J. C., & Hu, J. C. (2000). Active faulting and earthquake hazard: The case study of the Chihshang fault, Taiwan. Journal of Geodynamics, 29(3-5), 151-185.
    Anthony, J. L., & Marone, C. (2005). Influence of particle characteristics on granular friction. Journal of Geophysical Research: Solid Earth, 110(B8).
    Asaoka, A., Sawada, Y., & Yamada, S. (2016). Riedel shear band formation with flower structures that develop at the surface ground on a strike slip fault. Japanese Geotechnical Society Special Publication, 2(20), 751-754.
    Babadi, M. F., Mehrabi, B., Tassi, F., Cabassi, J., Vaselli, O., Shakeri, A., Pecchioni, E., Venturi, S., Zelenski, M., & Chaplygin, I. (2019). Origin of fluids discharged from mud volcanoes in SE Iran. Marine and Petroleum Geology, 106, 190-205.
    Bailey, S. (1988). X-ray diffraction identification of the polytypes of mica, serpentine, and chlorite. Clays and Clay Minerals, 36, 193-213.
    Beaufort, D., Rigault, C., Billon, S., Billault, V., Inoue, A., Inoué, S., & Patrier, P. (2015). Chlorite and chloritization processes through mixed-layer mineral series in low-temperature geological systems–a review. Clay minerals, 50(4), 497-523.
    Belghazdis, M., & Hachem, E. K. (2022). Clay and clay minerals: a detailed review. International Journal of Recent Technology and Applied Science (IJORTAS), 4(2), 54-75.
    Biscaye, P. E. (1965). Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans. Geological Society of America Bulletin, 76(7), 803-832.
    Bjorkum, P. A., & Gjelsvik, N. (1988). An isochemical model for formation of authigenic kaolinite, K-feldspar and illite in sediments. Journal of Sedimentary Research, 58(3), 506-511.
    Blair, S., & Cook, N. (1998). Analysis of compressive fracture in rock using statistical techniques: Part II. Effect of microscale heterogeneity on macroscopic deformation. International Journal of Rock Mechanics and Mining Sciences, 35(7), 849-861.
    Blatt, H., & Christie, J. M. (1963). Undulatory extinction in quartz of igneous and metamorphic rocks and its significance in provenance studies of sedimentary rocks. Journal of Sedimentary Research, 33(3), 559-579.
    Bonini, M. (2021). Structural controls and earthquake response of Taiwan mud volcanoes. Marine and Petroleum Geology, 128, 105050.
    Borhara, K., & Onasch, C. M. (2020). Evidence for silica gel and its role in faulting in the Tuscarora Sandstone. Journal of Structural Geology, 139, 104140.
    Bourdelle, F., Dubois, M., Lloret, E., Durand, C., Addad, A., Bounoua, S., Ventalon, S., & Recourt, P. (2021). Kaolinite-to-chlorite conversion from Si, Al-rich fluid-origin veins/Fe-rich Carboniferous shale interaction. Minerals, 11(8), 804.
    Boutareaud, S., Calugaru, D. G., Han, R., Fabbri, O., Mizoguchi, K., Tsutsumi, A., & Shimamoto, T. (2008). Clay‐clast aggregates: A new textural evidence for seismic fault sliding? Geophysical Research Letters, 35(5).
    Brandes, C., & Tanner, D. C. (2020). Fault mechanics and earthquakes. In Understanding Faults (pp. 11-80). Elsevier.
    Brosch, F. J., & Kurz, W. (2008). Fault damage zones dominated by high-angle fractures within layer-parallel brittle shear zones: examples from the eastern Alps. Geological Society, London, Special Publications, 299(1), 75-95.
    Brown, E. T. (1981). Rock characterization, testing and monitoring: ISRM suggested methods.
    Brown, K. M. (1990). The nature and hydrogeologic significance of mud diapirs and diatremes for accretionary systems. Journal of Geophysical Research: Solid Earth, 95(B6), 8969-8982.
    Carpenter, B., Mollo, S., Viti, C., & Collettini, C. (2015). Influence of calcite decarbonation on the frictional behavior of carbonate-bearing gouge: implications for the instability of volcanic flanks and fault slip. Tectonophysics, 658, 128-136.
    Carpenter, B. M., Ikari, M. J., & Marone, C. (2016). Laboratory observations of time‐dependent frictional strengthening and stress relaxation in natural and synthetic fault gouges. Journal of Geophysical Research: Solid Earth, 121(2), 1183-1201.
    Castelltort, S., Nagel, S., Mouthereau, F., Lin, A. T. S., Wetzel, A., Kaus, B., Willett, S., Chiang, S. P., & Chiu, W. Y. (2011). Sedimentology of early Pliocene sandstones in the south-western Taiwan foreland: Implications for basin physiography in the early stages of collision. Journal of Asian Earth Sciences, 40(1), 52-71.
    Chan, C. H., Ma, K. F., Shyu, J. B. H., Lee, Y. T., Wang, Y. J., Gao, J. C., Yen, Y. T., & Rau, R. J. (2020). Probabilistic seismic hazard assessment for Taiwan: TEM PSHA2020. Earthquake Spectra, 36(1_suppl), 137-159.
    Chao, H. C., You, C. F., Lin, I. T., Liu, H. C., Chung, L. H., Huang, C. C., & Chung, C. H. (2022). Two-end-member mixing in the fluids emitted from Mud Volcano Lei-Gong-Huo, Eastern Taiwan: Evidence from Sr isotopes. Frontiers in Earth Science, 9, 750436.
    Chao, H. C., You, C. F., Liu, H. C., & Chung, C. H. (2013). The origin and migration of mud volcano fluids in Taiwan: Evidence from hydrogen, oxygen, and strontium isotopic compositions. Geochimica et cosmochimica acta, 114, 29-51.
    Chao, H. C., You, C. F., & Sun, C. H. (2010). Gases in Taiwan mud volcanoes: chemical composition, methane carbon isotopes, and gas fluxes. Applied Geochemistry, 25(3), 428-436.
    Chen, C. H., Lee, C. Y., Lin, J. W., & Chu, M. F. (2019). Provenance of sediments in western Foothills and Hsuehshan Range (Taiwan): A new view based on the EMP monazite versus LA-ICPMS zircon geochronology of detrital grains. Earth-Science Reviews, 190, 224-246.
    Chen, J., Chen, J., Yao, L., & Ma, X. (2023). Shear‐Enhanced Electrical Conductivity of Synthetic Quartz‐Graphite Gouges: Implications for Electromagnetic Observations in Carbonaceous Shear Zones. Journal of Geophysical Research: Solid Earth, 128(11), e2023JB027716.
    Chen, K. H., & Bürgmann, R. (2017). Creeping faults: Good news, bad news? Reviews of Geophysics, 55(2), 282-286.
    Chen, S. C., Hsu, S. K., Wang, Y., Chung, S. H., Chen, P. C., Tsai, C. H., Liu, C. S., Lin, H. S., & Lee, Y. W. (2014). Distribution and characters of the mud diapirs and mud volcanoes off southwest Taiwan. Journal of Asian Earth Sciences, 92, 201-214.
    Chen, T., & Liu, H. (2018). Researching Characterization of Adsorbed Water Parameters Based on Macro-mechanics Index. IOP Conference Series: Materials Science and Engineering,
    Chen, Z. L., Shi, H. Z., Xiong, C., He, W. H., Wang, H. Z., Wang, B., Dubinya, N., & Ge, K.-Q. (2023). Effects of mineralogical composition on uniaxial compressive strengths of sedimentary rocks. Petroleum Science, 20(5), 3062-3073.
    Chi, W. R. (1979). A biostratigraphic study of the Late Neogene sediments in the Kaohsiung area based on calcareous nannofossils. Proceedings of the Geological Society of China, 22, 121-144.
    Ching, K. E., & Chen, K. H. (2015). Tectonic effect for establishing a semi-dynamic datum in Southwest Taiwan. Earth, planets and space, 67, 1-14.
    Ching, K. E., Rau, R. J., Lee, J. C., & Hu, J. C. (2007). Contemporary deformation of tectonic escape in SW Taiwan from GPS observations, 1995–2005. Earth and Planetary Science Letters, 262(3-4), 601-619.
    Ching, K. E., Gourley, J. R., Lee, Y. H., Hsu, S. C., Chen, K. H., & Chen, C. L. (2016). Rapid deformation rates due to development of diapiric anticline in southwestern Taiwan from geodetic observations. Tectonophysics, 692, 241-251.
    Chiu, J. K., Tseng, W. H., & Liu, C. S. (2006). Distribution of gassy sediments and mud volcanoes offshore southwestern Taiwan. TAO: Terrestrial, Atmospheric and Oceanic Sciences, 17(4), 703.
    Choi, J. H., Edwards, P., Ko, K., & Kim, Y. S. (2016). Definition and classification of fault damage zones: A review and a new methodological approach. Earth-Science Reviews, 152, 70-87.
    Chou, J. T. (1971). A preliminary study of the stratigraphy and sedimentation of the mudstone formations in the Tainan area, southern Taiwan. Petroleum Geology of Taiwan, 8, 187-219.
    Chow, J., Lee, J., Liu, C., Lee, B., & Watkins, J. (2001). A submarine canyon as the cause of a mud volcano—Liuchieuyu Island in Taiwan. Marine Geology, 176(1-4), 55-63.
    Collettini, C., Niemeijer, A., Viti, C., & Marone, C. (2009). Fault zone fabric and fault weakness. Nature, 462(7275), 907-910.
    Colten-Bradley, V. A. (1987). Role of pressure in smectite dehydration—Effects on geopressure and smectite-to-illite transformation. AAPG Bulletin, 71(11), 1414-1427.
    Crundwell, F. K. (2017). On the mechanism of the dissolution of quartz and silica in aqueous solutions. ACS omega, 2(3), 1116-1127.
    Dang, J., & Zhou, Y. (2021). Amorphous materials and clay mineral formation in the coseismic gouge from a surface rupture of the Ms 8.0 Wenchuan earthquake. Tectonophysics, 818, 229077.
    Davis, G. H., Bump, A. P., Garcı́a, P. E., & Ahlgren, S. G. (2000). Conjugate Riedel deformation band shear zones. Journal of Structural Geology, 22(2), 169-190.
    Davis, G. H., Reynolds, S. J., & Kluth, C. F. (2011). Structural geology of rocks and regions. John Wiley & Sons.
    de Ruiter, L., Gunnæs, A. E., Dysthe, D. K., & Austrheim, H. (2020). Quartz dissolution associated with magnesium silicate hydrate cement precipitation. Solid Earth Discussions, 2020, 1-25.
    De Silva, V., Ranjith, P., Wu, B., & Perera, M. (2018). Micro-mechanics based numerical simulation of NaCl brine induced mechanical strength deterioration of sedimentary host-rock formations. Engineering geology, 242, 55-69.
    Delisle, G., Von Rad, U., Andruleit, H., Von Daniels, C., Tabrez, A., & Inam, A. (2002). Active mud volcanoes on-and offshore eastern Makran, Pakistan. International Journal of Earth Sciences, 91, 93-110.
    Dellisanti, F., Calafato, A., Pini, G., Moro, D., Ulian, G., & Valdrè, G. (2018). Effects of dehydration and grinding on the mechanical shear behaviour of Ca-rich montmorillonite. Applied Clay Science, 152, 239-248.
    Dellisanti, F., Minguzzi, V., & Valdrè, G. (2006). Thermal and structural properties of Ca-rich montmorillonite mechanically deformed by compaction and shear. Applied Clay Science, 31(3-4), 282-289.
    Dellisanti, F., Pini, G. A., Tateo, F., & Baudin, F. (2008). The role of tectonic shear strain on the illitization mechanism of mixed-layers illite–smectite. A case study from a fault zone in the Northern Apennines, Italy. International Journal of Earth Sciences, 97, 601-616.
    Di Toro, G., Hirose, T., Nielsen, S., Pennacchioni, G., & Shimamoto, T. (2006). Natural and experimental evidence of melt lubrication of faults during earthquakes. science, 311(5761), 647-649.
    Diao, Y., & Espinosa-Marzal, R. M. (2018). The role of water in fault lubrication. Nature communications, 9(1), 2309.
    Dimitrov, L. I. (2002). Mud volcanoes—the most important pathway for degassing deeply buried sediments. Earth-Science Reviews, 59(1-4), 49-76.
    Doll, M., Römer, M., Pape, T., Kölling, M., Kaul, N., dos Santos Ferreira, C., & Bohrmann, G. (2023). Recent and episodic activity of decoupled mud/fluid discharge at Sartori mud volcano in the Calabrian Arc, Mediterranean Sea. Frontiers in Earth Science, 11, 1181380.
    Dong, J., Wang, C., Lee, C., Liao, J.-J., & Pan, Y.-W. (2004). The influence of surface ruptures on building damage in the 1999 Chi-Chi earthquake: a case study in Fengyuan City. Engineering geology, 71(1-2), 157-179.
    Doo, W. B., Hsu, S. K., Lo, C. L., Chen, S. C., Tsai, C. H., Lin, J. Y., Huang, Y. P., Huang, Y. S., Chiu, S. D., & Ma, Y. F. (2015). Gravity anomalies of the active mud diapirs off southwest Taiwan. Geophysical Supplements to the Monthly Notices of the Royal Astronomical Society, 203(3), 2089-2098.
    Dou, Y., Yang, S., Shi, X., Clift, P. D., Liu, S., Liu, J., Li, C., Bi, L., & Zhao, Y. (2016). Provenance weathering and erosion records in southern Okinawa Trough sediments since 28 ka: Geochemical and Sr–Nd–Pb isotopic evidences. Chemical Geology, 425, 93-109.
    Edwards, K. J., Goebel, B. M., Rodgers, T. M., Schrenk, M. O., Gihring, T. M., Cardona, M. M., Mcguire, M. M., Hamers, R. J., Pace, N. R., & Banfield, J. F. (1999). Geomicrobiology of pyrite (FeS2) dissolution: case study at Iron Mountain, California. Geomicrobiology Journal, 16(2), 155-179.
    Elliston, J. (2018). Hydration of silica and its role in the formation of quartz veins—Part 1. Substantia, 2(2), 43-71.
    Faulkner, D., Jackson, C., Lunn, R., Schlische, R., Shipton, Z., Wibberley, C., & Withjack, M. (2010). A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones. Journal of Structural Geology, 32(11), 1557-1575.
    Fitz-Diaz, E., Hall, C. M., & van der Pluijm, B. A. (2016). XRD-based 40Ar/39Ar age correction for fine-grained illite, with application to folded carbonates in the Monterrey Salient (northern Mexico). Geochimica et cosmochimica acta, 181, 201-216.
    Frolova, J. V., Gvozdeva, I. P., & Kuznetsov, N. P. (2015). Effects of hydrothermal alterations on physical and mechanical properties of rocks in the Geysers Valley (Kamchatka Peninsula) in connection with landslide development. Proceedings World Geothermal Congress,
    Fukuchi, R., Fujimoto, K., Kameda, J., Hamahashi, M., Yamaguchi, A., Kimura, G., Hamada, Y., Hashimoto, Y., Kitamura, Y., & Saito, S. (2014). Changes in illite crystallinity within an ancient tectonic boundary thrust caused by thermal, mechanical, and hydrothermal effects: an example from the Nobeoka Thrust, southwest Japan. Earth, Planets and Space, 66(1), 1-12.
    Gallego-Torres, D., Reolid, M., Nieto-Moreno, V., & Martínez-Casado, F. J. (2015). Pyrite framboid size distribution as a record for relative variations in sedimentation rate: An example on the Toarcian Oceanic Anoxic Event in Southiberian Palaeomargin. Sedimentary geology, 330, 59-73.
    Gerwert, K., & Kötting, C. (2010). Fourier transform infrared (FTIR) spectroscopy. eLS.
    Goldstein, J. I., Newbury, D. E., Michael, J. R., Ritchie, N. W., Scott, J. H. J., & Joy, D. C. (2017). Scanning electron microscopy and X-ray microanalysis (fourth edition ed.). springer.
    Grathoff, G. H., & Moore, D. (1996). Illite polytype quantification using Wildfire© calculated X-ray diffraction patterns. Clays and Clay Minerals, 44, 835-842.
    Gu, D., Han, R., & Woo, S. (2021). Geological records of coseismic shear localization along the Yangsan Fault, Korea. Journal of Geophysical Research: Solid Earth, 126(8), e2020JB021393.
    Guimarães, V., & Bobos, I. (2021). Role of clay barrier systems in the disposal of radioactive waste. In Sorbents Materials for Controlling Environmental Pollution (pp. 513-541). Elsevier.
    Guo, S., Pu, H., Yang, M., Liu, D., Sha, Z., & Xu, J. (2022). Study of the Influence of Clay Minerals on the Mechanical and Percolation Properties of Weakly Cemented Rocks. Geofluids, 2022.
    Haines, S. H., & van der Pluijm, B. A. (2008). Clay quantification and Ar–Ar dating of synthetic and natural gouge: application to the Miocene Sierra Mazatán detachment fault, Sonora, Mexico. Journal of Structural Geology, 30(4), 525-538.
    Han, R., Shimamoto, T., Hirose, T., Ree, J. H., & Ando, J. i. (2007). Ultralow friction of carbonate faults caused by thermal decomposition. science, 316(5826), 878-881.
    Harris, R. A. (2017). Large earthquakes and creeping faults. Reviews of Geophysics, 55(1), 169-198.
    Higuchi, K., Chigira, M., Lee, D. H., & Wu, J. H. (2020). Pore-water chemistry and its influence on rock mechanical properties and hydrogeophysical processes in a mudstone slope in the southwestern Taiwan badlands. Catena, 190, 104533.
    Hirono, T., Tanikawa, W., Honda, G., Kameda, J., Fukuda, J. i., & Ishikawa, T. (2013). Importance of mechanochemical effects on fault slip behavior during earthquakes. Geophysical Research Letters, 40(12), 2988-2992.
    Horbe, A., & Santos, A. G. (2009). Chemical composition of black-watered rivers in the western Amazon Region (Brazil). Journal of the Brazilian Chemical Society, 20, 1119-1126.
    Hower, J., Eslinger, E. V., Hower, M. E., & Perry, E. A. (1976). Mechanism of burial metamorphism of argillaceous sediment: 1. Mineralogical and chemical evidence. Geological Society of America Bulletin, 87(5), 725-737.
    Hu, J. C., Hou, C. S., Shen, L. C., Chan, Y. C., Chen, R.-F., Huang, C., Rau, R.-J., Chen, K. H. H., Lin, C. W., & Huang, M. H. (2007). Fault activity and lateral extrusion inferred from velocity field revealed by GPS measurements in the Pingtung area of southwestern Taiwan. Journal of Asian Earth Sciences, 31(3), 287-302.
    Huang, M. H., & Evans, E. L. (2019). Total variation regularization of geodetically constrained block models in southwest Taiwan. Journal of Geophysical Research: Solid Earth, 124(12), 13269-13285.
    Huang, M. H., Hu, J. C., Hsieh, C. S., Ching, K. E., Rau, R. J., Pathier, E., Fruneau, B., & Deffontaines, B. (2006). A growing structure near the deformation front in SW Taiwan as deduced from SAR interferometry and geodetic observation. Geophysical Research Letters, 33(12).
    Ijiri, A., Setoguchi, R., Mitsutome, Y., Toki, T., Murayama, M., Hagino, K., Hamada, Y., Yamagata, T., Matsuzaki, H., & Tanikawa, W. (2023). Origins of sediments and fluids in submarine mud volcanoes off Tanegashima Island, northern Ryukyu Trench, Japan. Frontiers in Earth Science, 11, 1206810.
    Istadi, B. P., Pramono, G. H., Sumintadireja, P., & Alam, S. (2009). Modeling study of growth and potential geohazard for LUSI mud volcano: East Java, Indonesia. Marine and Petroleum Geology, 26(9), 1724-1739.
    Janssen, C., Wirth, R., Rybacki, E., Naumann, R., Kemnitz, H., Wenk, H. R., & Dresen, G. (2010). Amorphous material in SAFOD core samples (San Andreas Fault): Evidence for crush‐origin pseudotachylytes? Geophysical Research Letters, 37(1).
    Jiang, Q., Cui, J., Feng, X., & Jiang, Y. (2014). Application of computerized tomographic scanning to the study of water-induced weakening of mudstone. Bulletin of Engineering Geology and the Environment, 73, 1293-1301.
    Jiang, W. T., Horng, C. S., Roberts, A. P., & Peacor, D. R. (2001). Contradictory magnetic polarities in sediments and variable timing of neoformation of authigenic greigite. Earth and Planetary Science Letters, 193(1-2), 1-12.
    Kübler, B., & Jaboyedoff, M. (2000). Illite crystallinity. Comptes Rendus de l'Académie des Sciences-Series IIA-Earth and Planetary Science, 331(2), 75-89.
    Kastner, M. (1999). Oceanic minerals: Their origin, nature of their environment, and significance. Proceedings of the National Academy of Sciences, 96(7), 3380-3387.
    Katayama, I., Kubo, T., Sakuma, H., & Kawai, K. (2015). Can clay minerals account for the behavior of non-asperity on the subducting plate interface? Progress in Earth and Planetary Science, 2, 1-8.
    Kazerani, T. (2013). A discontinuum-based model to simulate compressive and tensile failure in sedimentary rock. Journal of Rock Mechanics and Geotechnical Engineering, 5(5), 378-388.
    Khlystov, O., Poort, J., Mazzini, A., Akhmanov, G., Minami, H., Hachikubo, A., Khabuev, A., Kazakov, A., De Batist, M., & Naudts, L. (2019). Shallow-rooted mud volcanism in Lake Baikal. Marine and Petroleum Geology, 102, 580-589.
    Kirilova, M., Toy, V., Rooney, J. S., Giorgetti, C., Gordon, K. C., Collettini, C., & Takeshita, T. (2018). Structural disorder of graphite and implications for graphite thermometry. Solid Earth, 9(1), 223-231.
    Kloprogge, J. T., Komarneni, S., & Amonette, J. E. (1999). Synthesis of smectite clay minerals: a critical review. Clays and Clay Minerals, 47(5), 529-554.
    Kohl, B., & Roberts, H. H. (1995). Mud volcanoes in the Gulf of Mexico: A mechanism for mixing sediments of different ages in slope environments.
    Komatsu, G., Ishimaru, R., Miyake, N., Kawai, K., Kobayashi, M., Sakuma, H., & Matsui, T. (2019). The Goshogake mud volcano field, Tohoku, northern Japan: An acidic, high-temperature system related to magmatic volcanism. Geomorphology, 329, 32-45.
    Kowacz, M., & Putnis, A. (2008). The effect of specific background electrolytes on water structure and solute hydration: Consequences for crystal dissolution and growth. Geochimica et cosmochimica acta, 72(18), 4476-4487.
    Kuo, L. W., Song, S. R., Yeh, E. C., & Chen, H. F. (2009). Clay mineral anomalies in the fault zone of the Chelungpu Fault, Taiwan, and their implications. Geophysical Research Letters, 36(18).
    Kuwahara, Y., & Makio, M. (2014). In situ AFM study on barite (001) surface dissolution in NaCl solutions at 30° C. Applied Geochemistry, 51, 246-254.
    Lacombe, O., Mouthereau, F., Angelier, J., & Deffontaines, B. (2001). Structural, geodetic and seismological evidence for tectonic escape in SW Taiwan. Tectonophysics, 333, 323-345.
    Lacombe, O., Mouthereau, F., Deffontaines, B., Angelier, J., Chu, H. T., & Lee, C. T. (1999). Geometry and Quaternary kinematics of fold-and-thrust units of southwestern Taiwan. . Tectonics, 18(3), 1198-1123.
    Larsen, A. S., Ruggiero, M. T., Johansson, K. E., Zeitler, J. A., & Rantanen, J. (2017). Tracking dehydration mechanisms in crystalline hydrates with molecular dynamics simulations. Crystal Growth & Design, 17(10), 5017-5022.
    Lee, D. H., Lin, H. M., & Wu, J. H. (2007). The basic properties of mudstone slopes in southwestern Taiwan. Journal of GeoEngineering, 2(3), 81-95.
    Lee, J. C., Angelier, J., Chu, H. T., Hu, J. C., Jeng, F. S., & Rau, R. J. (2003). Active fault creep variations at Chihshang, Taiwan, revealed by creep meter monitoring, 1998–2001. Journal of Geophysical Research: Solid Earth, 108(B11).
    Leighton, A., Brook, M. S., Cave, M., Rowe, M. C., Stanley, A., & Tunnicliffe, J. F. (2022). Engineering geomorphological reconnaissance of the December 2018 Waimata Valley mud volcano eruption, Gisborne, New Zealand. Quarterly Journal of Engineering Geology and Hydrogeology, 55(4), qjegh2021-2149.
    Li, G., Li, C., Zhang, B., Zhang, L., Liang, Z., & Chen, Q. (2024). Characterization of reservoir quality in tight sandstones from the Benxi Formation, eastern Ordos Basin, China. Frontiers in Earth Science, 12, 1377738.
    Lienkaemper, J. J., McFarland, F. S., Simpson, R. W., & Caskey, S. J. (2014). Using surface creep rate to infer fraction locked for sections of the San Andreas fault system in northern California from alignment array and GPS data. Bulletin of the Seismological Society of America, 104(6), 3094-3114.
    Lin, A. (2019). Thermal pressurization and fluidization of pulverized cataclastic rocks formed in seismogenic fault zones. Journal of Structural Geology, 125, 278-284.
    Lin, C. H., Wu, S. M., Lin, C. Y., & Chien, C. W. (2023). Early Pliocene otolith assemblages from the outer-shelf environment reveal the establishment of mesopelagic fish fauna over 3 million years ago in southwestern Taiwan. Swiss Journal of Palaeontology, 142(1), 23.
    Lin, G. P., Chang, W. L., & Chiu, C. Y. (2024). Unraveling the role played by a buried mud diapir: alternative model for 2016 Mw 6.4 MeiNong earthquake in southwestern Taiwan. Geoscience Letters, 11(1), 21.
    Lin, M. L., Chung, C. F., & Jeng, F. S. (2006). Deformation of overburden soil induced by thrust fault slip. Engineering geology, 88(1-2), 70-89.
    Liu, C. D., Cheng, Y., Jiao, Y. Y., Zhang, G. H., Zhang, W. S., Ou, G. Z., & Tan, F. (2021). Experimental study on the effect of water on mechanical properties of swelling mudstone. Engineering geology, 295, 106448.
    Liu, G., Cai, M., & Huang, M. (2018). Mechanical properties of brittle rock governed by micro-geometric heterogeneity. Computers and Geotechnics, 104, 358-372.
    Liu, J., Zeng, M. Y., Luo, J. T., Fu, H. Y., & Zeng, L. (2024). Strength Characteristics and Failure Mechanisms of Silty Mudstone with Preexisting Cracks. Journal of Materials in Civil Engineering, 36(8), 04024225.
    Liu, K., Huang, F., Gao, S., Zhang, Z., Ren, Y., & An, B. (2022). Morphology of framboidal pyrite and its textural evolution: Evidence from the Logatchev area, Mid-Atlantic Ridge. Ore Geology Reviews, 141, 104630.
    Liu, R., Ren, Z., Yang, P., He, H., Smith, T. M., Guo, W., & Wu, L. (2021). Mesozoic tectono-thermal event of the Qinshui Basin, central north China craton: insights from illite crystallinity and vitrinite reflectance. Frontiers in Earth Science, 9, 765497.
    Lo, Y. T., Ching, K. E., Yen, H.Y., & Chen, S. C. (2023). Bouguer gravity anomalies and the three-dimensional density structure of a thick mudstone area: A case study of southwestern Taiwan. Tectonophysics, 848, 229730.
    Logan, J. (1979). Experimental studies of simulated gouge and their application to studies of natural fault gouge. Analysis of actual fault zones in bedrock, 305-343.
    Low, P. F. (1976). Viscosity of interlayer water in montmorillonite. Soil Science Society of America Journal, 40(4), 500-505.
    Lu, C. H., Chuang, R. C., Chiang, P. C., Yen, J. Y., Ching, K. E., & Chen, Y. G. (2024). Detecting infrastructure hazard potential change by SAR techniques on postseismic surface deformation: A case study of 2016 Meinong earthquake in southwestern Taiwan. Engineering Geology, 107827.
    Mai, H. A., Lee, J. C., Chen, K. H., & Wen, K. L. (2021). Coulomb stress changes triggering surface pop-up during the 2016 Mw 6.4 Meinong earthquake with implications for earthquake-induced mud diapiring in SW Taiwan. Journal of Asian Earth Sciences, 218, 104847.
    Marti, S., Stünitz, H., Heilbronner, R., & Plümper, O. (2020). Amorphous material in experimentally deformed mafic rock and its temperature dependence: Implications for fault rheology during aseismic creep and seismic rupture. Journal of Structural Geology, 138, 104081.
    Meng, Z., Zhang, J., & Peng, S. (2006). Influence of sedimentary environments on mechanical properties of clastic rocks. Environmental geology, 51, 113-120.
    Moore, D. E., & Lockner, D. A. (2004). Crystallographic controls on the frictional behavior of dry and water‐saturated sheet structure minerals. Journal of Geophysical Research: Solid Earth, 109(B3).
    Moore, D. E., & Lockner, D. A. (2008). Talc friction in the temperature range 25–400 C: Relevance for fault-zone weakening. Tectonophysics, 449(1-4), 120-132.
    Morrow, C. A., Moore, D. E., & Lockner, D. A. (2017). Frictional strength of wet and dry montmorillonite. Journal of Geophysical Research: Solid Earth, 122(5), 3392-3409.
    Mu, N., Fu, Y., Schulz, H. M., & van Berk, W. (2016). Authigenic albite formation due to water–rock interactions—Case study: Magnus oilfield (UK, Northern North Sea). Sedimentary geology, 331, 30-41.
    Nagarajan, V., Tsai, H. C., Chen, J. S., Koner, S., Kumar, R. S., Chao, H. C., & Hsu, B. M. (2023). Systematic assessment of mineral distribution and diversity of microbial communities and its interactions in the Taiwan subduction zone of mud volcanoes. Environmental Research, 216, 114536.
    Nesbitt, H. W., & Young, G. M. (1989). Formation and diagenesis of weathering profiles. The Journal of Geology, 97(2), 129-147.
    Nutting, P. G. (1943). Some standard thermal dehydration curves of minerals. US Government Printing Office.
    Odonne, F., Imbert, P., Remy, D., Gabalda, G., Aliyev, A. A., Abbasov, O. R., Baloglanov, E. E., Bichaud, V., Juste, R., & Dupuis, M. (2021). Surface structure, activity and microgravimetry modeling delineate contrasted mud chamber types below flat and conical mud volcanoes from Azerbaijan. Marine and Petroleum Geology, 134, 105315.
    Olesik, J. (2020). ICP-OES Capabilities, Developments, Limitations, and Any Potential Challengers? Spectroscopy, 35(6), 18–21-18–21.
    Olsen, M. P., Scholz, C. H., & Léger, A. (1998). Healing and sealing of a simulated fault gouge under hydrothermal conditions: Implications for fault healing. Journal of Geophysical Research: Solid Earth, 103(B4), 7421-7430.
    Oohashi, K., Hirose, T., & Shimamoto, T. (2011). Shear-induced graphitization of carbonaceous materials during seismic fault motion: Experiments and possible implications for fault mechanics. Journal of Structural Geology, 33(6), 1122-1134.
    Oohashi, K., Hirose, T., & Shimamoto, T. (2013). Graphite as a lubricating agent in fault zones: An insight from low‐to high‐velocity friction experiments on a mixed graphite‐quartz gouge. Journal of Geophysical Research: Solid Earth, 118(5), 2067-2084.
    Ozawa, K., & Takizawa, S. (2007). Amorphous material formed by the mechanochemical effect in natural pseudotachylyte of crushing origin: A case study of the Iida-Matsukawa Fault, Nagano Prefecture, Central Japan. Journal of Structural Geology, 29(11), 1855-1869.
    Papazachos, B., Scordilis, E., Panagiotopoulos, D., Papazachos, C., & Karakaisis, G. (2004). Global relations between seismic fault parameters and moment magnitude of earthquakes. Bulletin of the Geological Society of Greece, 36(3), 1482-1489.
    Parry, W. (1998). Fault-fluid compositions from fluid-inclusion observations and solubilities of fracture-sealing minerals. Tectonophysics, 290(1-2), 1-26.
    Plummer, L. N., & Wigley, T. (1976). The dissolution of calcite in CO2-saturated solutions at 25 C and 1 atmosphere total pressure. Geochimica et cosmochimica acta, 40(2), 191-202.
    Ptáček, P., Frajkorová, F., Šoukal, F., & Opravil, T. (2014). Kinetics and mechanism of three stages of thermal transformation of kaolinite to metakaolinite. Powder Technology, 264, 439-445.
    Risthaus, P., Bosbach, D., Becker, U., & Putnis, A. (2001). Barite scale formation and dissolution at high ionic strength studied with atomic force microscopy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 191(3), 201-214.
    Sakuma, H. (2013). Adhesion energy between mica surfaces: Implications for the frictional coefficient under dry and wet conditions. Journal of Geophysical Research: Solid Earth, 118(12), 6066-6075.
    Saroni, A., Sciarra, A., Grassa, F., Eich, A., Weber, M., Lott, C., Ferretti, G., Ivaldi, R., & Coltorti, M. (2020). Shallow submarine mud volcano in the northern Tyrrhenian sea, Italy. Applied Geochemistry, 122, 104722.
    Scholz, C. H. (1998). Earthquakes and friction laws. Nature, 391(6662), 37-42.
    Schuck, B., Janssen, C., Schleicher, A. M., Toy, V. G., & Dresen, G. (2018). Microstructures imply cataclasis and authigenic mineral formation control geomechanical properties of New Zealand's Alpine Fault. Journal of Structural Geology, 110, 172-186.
    Seyler, C., Shreedharan, S., Saffer, D., & Marone, C. (2023). The role of clay in limiting frictional healing in fault gouges. Geophysical Research Letters, 50(20), e2023GL104984.
    Shi, W., Kan, A. T., Fan, C., & Tomson, M. B. (2012). Solubility of barite up to 250 c and 1500 bar in up to 6 m NaCl solution. Industrial & Engineering Chemistry Research, 51(7), 3119-3128.
    Shih, T. (1967). A survey of the active mud volcanoes in Taiwan and a study of their types and the character of the mud. Petrol. Geol. Taiwan, 5, 259-311.
    Shyu, J. B. H., Yin, Y. H., Chen, C. H., Chuang, Y. R., & Liu, S. C. (2020). Updates to the on-land seismogenic structure source database by the Taiwan Earthquake Model (TEM) project for seismic hazard analysis of Taiwan. Terr Atmos Ocean Sci, 31(4), 469.
    Sibson, R. (1977). Fault rocks and fault mechanisms. Journal of the Geological Society, 133(3), 191-213.
    Sindern, S., Stanjek, H., Hilgers, C., & Etoundi, Y. (2007). Short-term hydrothermal effects on the 'crystallinities' of illite and chlorite in the footwall of the Aachen-Faille du Midi thrust fault - First results of the RWTH-1 drilling project. Clays and Clay Minerals, 55(2), 200-212.
    Song, Y., Zheng, J., Ma, H., Shao, Z., Yang, J., Shen, F., & Liu, C. (2023). Study on Uniaxial Mechanical Behavior and Damage Evolution Mechanism of Water-Immersed Mudstone. Sustainability, 15(16), 12499.
    Środoń, J. (1978). Illite group clay minerals. Encyclopedia of Sedimentology, 597-601.
    Środoń, J. (2013). Identification and quantitative analysis of clay minerals. Developments in clay science, 5, 25-49.
    Steudel, A., Kleeberg, R., Koch, C. B., Friedrich, F., & Emmerich, K. (2016). Thermal behavior of chlorites of the clinochlore-chamosite solid solution series: Oxidation of structural iron, hydrogen release and dehydroxylation. Applied Clay Science, 132, 626-634.
    Stoffer, P. W. (2008). Where's the Hayward Fault?: A Green Guide to the Fault. Citeseer.
    Šucha, V., Środoń, J., Clauer, N., Elsass, F., Eberl, D., Kraus, I., & Madejová, J. (2001). Weathering of smectite and illite-smectite under temperate climatic conditions. Clay minerals, 36(3), 403-419.
    Sung, Q. C., Chang, H. C., Liu, H. C., & Chen, Y. C. (2010). Mud volcanoes along the Chishan fault in Southwestern Taiwan: A release bend model. Geomorphology, 118(1-2), 188-198.
    Swiatlowski, J. L. (2020). Understanding Fault Creep From the Macroscopic to the Microscopic Scale [Doctoral dissertation] University of California, Riverside.
    Tazaki, K. (1986). Observation of primitive clay precursors during microcline weathering. Contributions to Mineralogy and Petrology, 92(1), 86-88.
    Tembe, S., Lockner, D. A., & Wong, T. F. (2010). Effect of clay content and mineralogy on frictional sliding behavior of simulated gouges: Binary and ternary mixtures of quartz, illite, and montmorillonite. Journal of Geophysical Research: Solid Earth, 115(B3).
    Teng, L. S. (1990). Geotectonic evolution of late Cenozoic arc-continent collision in Taiwan. Tectonophysics, 183(1-4), 57-76.
    Thomas, P., Heide, K., & Földvari, M. (2015). Water and hydrogen release from perlites and opal: a study with a directly coupled evolved gas analyzing system (DEGAS). Journal of Thermal Analysis and Calorimetry, 120, 95-101.
    Tsukamoto, S., Tagami, T., & Zwingmann, H. (2020). Direct dating of fault movement. In Understanding Faults (pp. 257-282). Elsevier.
    Vdović, N., Jurina, I., Škapin, S. D., & Sondi, I. (2010). The surface properties of clay minerals modified by intensive dry milling—revisited. Applied Clay Science, 48(4), 575-580.
    Velde, B. (1965). Experimental determination of muscovite polymorph stabilities. American Mineralogist: Journal of Earth and Planetary Materials, 50(3-4), 436-449.
    Volpe, G., Pozzi, G., & Collettini, C. (2022). YBPR or SCC′? Suggestion for the nomenclature of experimental brittle fault fabric in phyllosilicate-granular mixtures. Journal of Structural Geology, 165, 104743.
    Wan, Z., Zhang, J., Lin, G., Zhong, S., Li, Q., Wei, J., & Sun, Y. (2021). Formation Mechanism of Mud Volcanoes/Mud Diapirs Based on Physical Simulation. Geofluids, 2021, 1-16.
    Wang, Y., Lin, Y. N., Ota, Y., Chung, L. H., Shyu, J. B. H., Chiang, H. W., Chen, Y. G., Hsu, H. H., & Shen, C. C. (2022). Mud diapir or fault‐related fold? On the development of an active mud‐cored anticline offshore southwestern Taiwan. Tectonics, 41(9), e2022TC007234.
    Wang, Z., Du, J., Wu, S., Wei, Y., Xiao, J., Han, W., Pan, D., & Zheng, B. (2020). Water softening mechanism and strength model for saturated carbonaceous mudstone in Panzhihua Airport, China. Advances in Civil Engineering, 2020, 1-12.
    Wei, P., Xiong, Y., Zheng, Y.-Y., Zaoui, A., Yin, Z.-Y., & Niu, W. (2023). Nanoscale friction at the quartz-quartz/kaolinite interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 676, 132296.
    Wesson, R. L. (1988). Dynamics of fault creep. Journal of Geophysical Research: Solid Earth, 93(B8), 8929-8951.
    White, D. E. (1955). Violent mud-volcano eruption of Lake City hot springs, northeastern California. Geological Society of America Bulletin, 66(9), 1109-1130.
    Wilkin, R., Barnes, H., & Brantley, S. (1996). The size distribution of framboidal pyrite in modern sediments: an indicator of redox conditions. Geochimica et cosmochimica acta, 60(20), 3897-3912.
    Wu, H., Zhou, J., Hu, W., Sun, F., Kang, X., Zhang, Y., He, W., & Feng, C. (2022). Origin of authigenic albite in a lacustrine mixed-deposition sequence (Lucaogou Formation, Junggar Basin) and its diagenesis implications. Energy Exploration & Exploitation, 40(1), 132-154.
    Wu, J., Liu, Z., Michard, A., Tachikawa, K., Filippidi, A., He, Z., Hennekam, R., Yang, S., Davies, G. R., & de Lange, G. J. (2022). Effect of barite-bound Sr on detrital Sr isotope systematics in marine sediments. Chemical Geology, 587, 120613.
    Wu, M. H., & Wang, J. P. (2020). Relationship between earthquake magnitude and fault length for Taiwan: Bayesian approach. Journal of GeoEngineering, 15(2).
    Wu, W. J., Kuo, L. W., Ku, C. S., Chiang, C. Y., Sheu, H. S., Aprilniadi, T. D., & Dong, J. J. (2020). Mixed-Mode Formation of Amorphous Materials in the Creeping Zone of the Chihshang Fault, Taiwan, and Implications for Deformation Style. Journal of Geophysical Research: Solid Earth, 125(6), e2020JB019862.
    Xie, C. M., Li, C., Li, L. Q., Wu, Y. W., & Hu, P. Y. (2009). First discovery of mud volcanoes in central Qiangtang, northern Tibet, China. Geological Bulletin of China, 28(9), 1319-1324.
    Yadav, S. K., & Chakrapani, G. J. (2006). Dissolution kinetics of rock–water interactions and its implications. Current Science, 932-937.
    Yan, P., Wang, Y., Liu, J., Zhong, G., & Liu, X. (2017). Discovery of the southwest Dongsha Island mud volcanoes amid the northern margin of the South China Sea. Marine and Petroleum Geology, 88, 858-870.
    Yan, Y. S., Chen, Y. H., Wang, C. C., Hwu, Y., Lee, Y. C., Sheu, H. S., & Chiang, C. C. (2021). Faults caused by the fault: Microstructural and mineral characterization of deformation in Chungliao Tunnel, Taiwan, caused by Chishan Fault. Engineering geology, 292, 106245.
    Yassir, N. A. (1989). Mud volcanoes and the behaviour of overpressured clays and silts Doctoral dissertation, University of London.
    Yen, N. T., Lin, T. L., Liao, L. R., Chang, P. Y., & Mittal, H. (2020). Illustrate mud-fluid conduits and their variety using resistivity image profiling method in Southwest Taiwan. TAO: Terrestrial, Atmospheric and Oceanic Sciences, 31(5), 5.
    Yokoyama, K., Tsutsumi, Y., Lee, C. S., Shen, J., Lan, C. Y., & Zhao, L. (2007). Provenance study of tertiary sandstones from the Western foothills and Hsuehshan Range, Taiwan. Bulletin of the National Museum of Nature and Science Serial C, 33, 7-26.
    You, C. F., Gieskes, J. M., Lee, T., Yui, T. F., & Chen, H. W. (2004). Geochemistry of mud volcano fluids in the Taiwan accretionary prism. Applied Geochemistry, 19(5), 695-707.
    Yu, S. B., Chen, H. Y., & Kuo, L. C. (1997). Velocity field of GPS stations in the Taiwan area. Tectonophysics, 274(1-3), 41-59.
    Yund, R., Blanpied, M., Tullis, T., & Weeks, J. (1990). Amorphous material in high strain experimental fault gouges. Journal of Geophysical Research: Solid Earth, 95(B10), 15589-15602.
    Zhang, R., Zhang, X., & Hu, S. (2015). Dissolution kinetics of quartz in water at high temperatures across the critical state of water. The Journal of Supercritical Fluids, 100, 58-69.
    Zou, Y., Zheng, C., & Sheikhi, S. (2021). Role of ion exchange in the brine-rock interaction systems: A detailed geochemical modeling study. Chemical Geology, 559, 119992.
    Zuo, T., Wang, R., He, Y., Shi, W., Liang, J., Xu, L., Du, H., Deng, Y., & Xu, X. (2022). Natural gas migration pathways and their influence on gas hydrate enrichment in the Qiongdongnan Basin, South China Sea. Geofluids, 2022.

    無法下載圖示 校內:2030-02-01公開
    校外:2030-02-01公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE