簡易檢索 / 詳目顯示

研究生: 劉嘉瑋
Wei, Liou-Chia
論文名稱: 探討異染色質調控高糖飲食誘導的果蠅足細胞病變之表觀遺傳機制
The epigenetic role of heterochromatin in high-dietary-sugar induced podocyte dysfunction in Drosophila
指導教授: 顏賢章
Yan, Shian-Jang
學位類別: 碩士
Master
系所名稱: 醫學院 - 生理學研究所
Department of Physiology
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 44
中文關鍵詞: 果蠅足細胞糖尿病腎病變
外文關鍵詞: Drosophila, podocyte, diabetic nephropathy, nephrocyte
相關次數: 點閱:104下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在現今的社會中,糖尿病腎病變已是一個全球必需關注的議題,而且它還是主要導致末期腎臟病的因素,近年來,許多研究都指出足細胞在糖尿病腎病變中扮演著相當重要的角色,儘管現在的研究已經從基因層面去了解此疾病的致病機制,但至今仍無有效的治療方法,然而,近年來表觀遺傳研究的出現為治療糖尿病腎病變帶來一絲曙光, 而其中異染色質所調控的表觀遺傳機制在腎臟的功能方面還尚未清楚,所以我們透過果蠅餵食高糖去建立一個高血糖所導致的糖尿病腎病變的模式,再利用這個模式去探討一個主要構成異染色質的異染色質蛋白 1 在這個疾病中扮演著什麼樣的角色。首先,我們透過兩種不同的餵食方式誘導果蠅腎臟功能缺失,分別是在幼蟲時期餵食高糖以及羽化後再進行高糖的餵食,我們發現幼蟲時期的高糖餵食導致果蠅有發育遲緩的現象而且其足細胞的功能也受到損害,而在成蟲時期的長時間高糖餵食也發現到類似的情形,我們發現到長時間的高糖餵食導致果蠅的足細胞的功能隨著老化漸漸受到損害並且減少果蠅的壽命,有趣的是我們還發現到長時間的高糖飲食會使足細胞內異染色質的表達量增加,但是隨著老化,異染色質的表達量逐漸下降與之前的文獻結果相符合,另外,我們還發現到隨著年紀的增長果蠅足細胞的尺寸逐漸變大。再者,之前的研究發現到如果減少異染色質蛋白 1的表達量可以使一個在果蠅足細胞裂隙隔膜上的重要穿膜蛋白Kirre的表達量上升,而且我們透過線上的資料庫分析發現到在Kirre這個基因體上有許多組蛋白3離胺酸9甲基化的修飾位點,更重要的是我們在高糖長時間的高糖飲食下發現到Kirre的表達量會隨著老化下降。 這些證據都證實異染色質蛋白 1在高糖飲食引發的足細胞功能缺失中扮演著重要的角色,最後,我們的證據指出老化時高糖飲食下所導致的足細胞穿膜蛋白Kirre的減少是透過異染色質的產生去抑制它的,這個研究有助於我們透過表觀遺傳學的角度去了解高糖所誘導的足細胞功能缺失的分子機制,來提供我們一個新的想法去治療糖尿病腎病變的足細胞功能損害。

    Diabetic nephropathy (DN), a growing global health problem, is the leading cause of end-stage kidney disease. Despite recent advances in genetic mechanisms of DN, effective therapeutics of DN are still lacking, suggesting that epigenetic mechanisms need to be explored in diabetic kidney disease. Furthermore, the molecular mechanisms by which heterochromatin, an important epigenetic complex, regulates renal functions remain unknown. Here, we use Drosophila as an animal model to investigate the role of Heterochromatin protein 1 (HP1), a major heterochromatin component, in high dietary sugar (HDS)-induced diabetic nephropathy. First, we establish two HDS induced renal failure models in larvae and adults, respectively. In the larval stage, HDS causes Drosophila developmental delay, and disrupts renal filtration function. In the adult stage, chronic HDS feeding decreases nephrocyte filtration function and longevity during aging. Interestingly, we found that long-term HDS treatment induces dynamic changes in the heterochromatin in which H3K9me2 and HP1 levels increase upon HDS feeding in adult nephrocytes. Interestingly, the heterochromatin levels decrease in nephrocytes during aging. However, nephrocyte nucleus size is reduced by HDS in early adult life but is increased in late adult life. Furthermore, in Drosophila nephrocytes, we found that kirre which is an important slit-diaphragm gene with multiple H3K9me2 binding sites on the gene body, is upregulated by HP1 RNAi. Moreover, chronic HDS feeding reduces Kirre levels during aging. Thus, HDS reduces slit-diaphragm protein Kirre to disrupt nephrocyte filtration function during aging, by increasing heterochromatin formation. My study reveals novel epigenetic mechanisms involved in HDS-induced renal diseases and may provide new insights to identify new therapeutics for DN.

    Abstract I 中文摘要 II Acknowledgement III Index IV Figure index VI 1. Introduction 1 1-1 Diabetic nephropathy and glomerulus pathology 1 1-2 Diabetic nephropathy and dysregulation of glucose metabolism 1 1-3 Diabetic nephropathy and podocyte dysfunction 3 1-4 Heterochromatin structure and function 4 1-5 Epigenetic modifications of diabetic nephropathy 5 1-6 Mammalian podocyte and Drosophila nephrocyte 6 1-7 Sns and Kirre participate in formation, adhesion and fusion of Drosophila nephrocyte slit-diaphragm 7 1-8 Significance of the central hypothesis in this study 8 2. Materials and methods 10 2-1 Fly stocks: 10 2-2 Fly cultures: 10 2-3 Immunofluorescence: 10 2-4 ANF-RFP uptake assay: 11 2-5 Dextran and avidin uptake assays: 12 2-6 Statistical analysis: 12 3. Results 13 3-1 Larval stage-HDS induces Drosophila renal dysfunction 13 3-2 Chronic HDS reduces longevity and nephrocyte functions during aging in adults 13 3-3 HDS increases heterochromatin levels in nephrocytes during aging, and nephrocyte-specific HP1 overexpression reduces longevity 14 3-4 Kirre is a HP1 downstream slit-diaphragm gene 15 3-5 Chronic HDS reduces slit-diaphragm protein Kirre levels during aging in adults via heterochromatin formation 15 4. Discussion 17 4-1 Summary of this research 17 4-2 HP1 regulates heterochromatin levels and participates in diabetic nephropathy 18 4-3 The epigenetic mechanism of HDS in diabetic nephropathy 19 4-4 The size of nephrocytes is increased during aging and decreased by HDS 20 4-5 Chronic HDS disrupts the function of nephrocyte slit-diaphragm which is a size selective barrier 20 4-6 Significance of this study 21 4-7 The limitations and advantages of the Drosophila HDS-induced diabetic nephropathy model 21 5. References 23 6. Figures 27 7. Supplemental information 38 8. Tables 44

    Bao, S., & Cagan, R. (2005). Preferential adhesion mediated by Hibris and Roughest regulates morphogenesis and patterning in the Drosophila eye. Dev Cell, 8(6), 925-935. doi:10.1016/j.devcel.2005.03.011
    Blattner, S. M., Hodgin, J. B., Nishio, M., Wylie, S. A., Saha, J., Soofi, A. A., . . . Kretzler, M. (2013). Divergent functions of the Rho GTPases Rac1 and Cdc42 in podocyte injury. Kidney Int, 84(5), 920-930. doi:10.1038/ki.2013.175
    Bour, B. A., Chakravarti, M., West, J. M., & Abmayr, S. M. (2000). Drosophila SNS, a member of the immunoglobulin superfamily that is essential for myoblast fusion. Genes Dev, 14(12), 1498-1511.
    Brasacchio, D., Okabe, J., Tikellis, C., Balcerczyk, A., George, P., Baker, E. K., . . . El-Osta, A. (2009). Hyperglycemia induces a dynamic cooperativity of histone methylase and demethylase enzymes associated with gene-activating epigenetic marks that coexist on the lysine tail. Diabetes, 58(5), 1229-1236. doi:10.2337/db08-1666
    Brownlee, M. (2005). The pathobiology of diabetic complications: a unifying mechanism. Diabetes, 54(6), 1615-1625.
    Buse, M. G. (2006). Hexosamines, insulin resistance, and the complications of diabetes: current status. Am J Physiol Endocrinol Metab, 290(1), E1-e8. doi:10.1152/ajpendo.00329.2005
    Dihazi, G. H., Jahn, O., Tampe, B., Zeisberg, M., Muller, C., Muller, G. A., & Dihazi, H. (2015). Proteomic analysis of embryonic kidney development: Heterochromatin proteins as epigenetic regulators of nephrogenesis. Sci Rep, 5, 13951. doi:10.1038/srep13951
    Dluhy, R. G., & McMahon, G. T. (2008). Intensive glycemic control in the ACCORD and ADVANCE trials. N Engl J Med, 358(24), 2630-2633. doi:10.1056/NEJMe0804182
    Doublier, S., Salvidio, G., Lupia, E., Ruotsalainen, V., Verzola, D., Deferrari, G., & Camussi, G. (2003). Nephrin expression is reduced in human diabetic nephropathy: evidence for a distinct role for glycated albumin and angiotensin II. Diabetes, 52(4), 1023-1030.
    El-Osta, A., Brasacchio, D., Yao, D., Pocai, A., Jones, P. L., Roeder, R. G., . . . Brownlee, M. (2008). Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia. J Exp Med, 205(10), 2409-2417. doi:10.1084/jem.20081188
    Eremina, V., & Quaggin, S. E. (2004). The role of VEGF-A in glomerular development and function. Curr Opin Nephrol Hypertens, 13(1), 9-15.
    Fu, Y., Zhu, J. Y., Zhang, F., Richman, A., Zhao, Z., & Han, Z. (2017). Comprehensive functional analysis of Rab GTPases in Drosophila nephrocytes. Cell Tissue Res, 368(3), 615-627. doi:10.1007/s00441-017-2575-2
    Garg, P., & Holzman, L. B. (2012). Podocytes: gaining a foothold. Exp Cell Res, 318(9), 955-963. doi:10.1016/j.yexcr.2012.02.030
    Gee, H. Y., Saisawat, P., Ashraf, S., Hurd, T. W., Vega-Warner, V., Fang, H., . . . Hildebrandt, F. (2013). ARHGDIA mutations cause nephrotic syndrome via defective RHO GTPase signaling. J Clin Invest, 123(8), 3243-3253. doi:10.1172/jci69134
    Gerstein, H. C., Miller, M. E., Byington, R. P., Goff, D. C., Jr., Bigger, J. T., Buse, J. B., . . . Friedewald, W. T. (2008). Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med, 358(24), 2545-2559. doi:10.1056/NEJMoa0802743
    Godel, M., Hartleben, B., Herbach, N., Liu, S., Zschiedrich, S., Lu, S., . . . Huber, T. B. (2011). Role of mTOR in podocyte function and diabetic nephropathy in humans and mice. J Clin Invest, 121(6), 2197-2209. doi:10.1172/jci44774
    Hartleben, B., Godel, M., Meyer-Schwesinger, C., Liu, S., Ulrich, T., Kobler, S., . . . Huber, T. B. (2010). Autophagy influences glomerular disease susceptibility and maintains podocyte homeostasis in aging mice. J Clin Invest, 120(4), 1084-1096. doi:10.1172/jci39492
    Hermle, T., Braun, D. A., Helmstadter, M., Huber, T. B., & Hildebrandt, F. (2017). Modeling Monogenic Human Nephrotic Syndrome in the Drosophila Garland Cell Nephrocyte. J Am Soc Nephrol, 28(5), 1521-1533. doi:10.1681/asn.2016050517
    Huber, T. B., Edelstein, C. L., Hartleben, B., Inoki, K., Jiang, M., Koya, D., . . . Dong, Z. (2012). Emerging role of autophagy in kidney function, diseases and aging. Autophagy, 8(7), 1009-1031. doi:10.4161/auto.19821
    Inoki, K., Mori, H., Wang, J., Suzuki, T., Hong, S., Yoshida, S., . . . Guan, K. L. (2011). mTORC1 activation in podocytes is a critical step in the development of diabetic nephropathy in mice. J Clin Invest, 121(6), 2181-2196. doi:10.1172/jci44771
    Kato, H., Gruenwald, A., Suh, J. H., Miner, J. H., Barisoni-Thomas, L., Taketo, M. M., . . . Susztak, K. (2011). Wnt/beta-catenin pathway in podocytes integrates cell adhesion, differentiation, and survival. J Biol Chem, 286(29), 26003-26015. doi:10.1074/jbc.M111.223164
    Larson, K., Yan, S. J., Tsurumi, A., Liu, J., Zhou, J., Gaur, K., . . . Li, W. X. (2012). Heterochromatin formation promotes longevity and represses ribosomal RNA synthesis. PLoS Genet, 8(1), e1002473. doi:10.1371/journal.pgen.1002473
    Liu, F., Zong, M., Wen, X., Li, X., Wang, J., Wang, Y., . . . Qi, H. (2016). Silencing of Histone Deacetylase 9 Expression in Podocytes Attenuates Kidney Injury in Diabetic Nephropathy. Sci Rep, 6, 33676. doi:10.1038/srep33676
    Liu, L. P., Ni, J. Q., Shi, Y. D., Oakeley, E. J., & Sun, F. L. (2005). Sex-specific role of Drosophila melanogaster HP1 in regulating chromatin structure and gene transcription. Nat Genet, 37(12), 1361-1366. doi:10.1038/ng1662
    Meyer, T. W., Bennett, P. H., & Nelson, R. G. (1999). Podocyte number predicts long-term urinary albumin excretion in Pima Indians with Type II diabetes and microalbuminuria. Diabetologia, 42(11), 1341-1344. doi:10.1007/s001250051447
    Na, J., Sweetwyne, M. T., Park, A. S., Susztak, K., & Cagan, R. L. (2015). Diet-Induced Podocyte Dysfunction in Drosophila and Mammals. Cell Rep, 12(4), 636-647. doi:10.1016/j.celrep.2015.06.056
    Nathan, D. M., Bayless, M., Cleary, P., Genuth, S., Gubitosi-Klug, R., Lachin, J. M., . . . Zinman, B. (2013). Diabetes control and complications trial/epidemiology of diabetes interventions and complications study at 30 years: advances and contributions. Diabetes, 62(12), 3976-3986. doi:10.2337/db13-1093
    Nathan, D. M., Genuth, S., Lachin, J., Cleary, P., Crofford, O., Davis, M., . . . Siebert, C. (1993). The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med, 329(14), 977-986. doi:10.1056/nejm199309303291401
    Norwood, L. E., Grade, S. K., Cryderman, D. E., Hines, K. A., Furiasse, N., Toro, R., . . . Wallrath, L. L. (2004). Conserved properties of HP1(Hsalpha). Gene, 336(1), 37-46. doi:10.1016/j.gene.2004.04.003
    Pagtalunan, M. E., Miller, P. L., Jumping-Eagle, S., Nelson, R. G., Myers, B. D., Rennke, H. G., . . . Meyer, T. W. (1997). Podocyte loss and progressive glomerular injury in type II diabetes. J Clin Invest, 99(2), 342-348. doi:10.1172/jci119163
    Patel, A., MacMahon, S., Chalmers, J., Neal, B., Billot, L., Woodward, M., . . . Travert, F. (2008). Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med, 358(24), 2560-2572. doi:10.1056/NEJMoa0802987
    Pirola, L., Balcerczyk, A., Okabe, J., & El-Osta, A. (2010). Epigenetic phenomena linked to diabetic complications. Nat Rev Endocrinol, 6(12), 665-675. doi:10.1038/nrendo.2010.188
    Reidy, K., Kang, H. M., Hostetter, T., & Susztak, K. (2014). Molecular mechanisms of diabetic kidney disease. J Clin Invest, 124(6), 2333-2340. doi:10.1172/jci72271
    Romagnani, P., & Remuzzi, G. (2013). Renal progenitors in non-diabetic and diabetic nephropathies. Trends Endocrinol Metab, 24(1), 13-20. doi:10.1016/j.tem.2012.09.002
    Ruiz-Gomez, M., Coutts, N., Price, A., Taylor, M. V., & Bate, M. (2000). Drosophila dumbfounded: a myoblast attractant essential for fusion. Cell, 102(2), 189-198.
    Shelton, C., Kocherlakota, K. S., Zhuang, S., & Abmayr, S. M. (2009). The immunoglobulin superfamily member Hbs functions redundantly with Sns in interactions between founder and fusion-competent myoblasts. Development, 136(7), 1159-1168. doi:10.1242/dev.026302
    Siddiqi, F. S., Majumder, S., Thai, K., Abdalla, M., Hu, P., Advani, S. L., . . . Advani, A. (2016). The Histone Methyltransferase Enzyme Enhancer of Zeste Homolog 2 Protects against Podocyte Oxidative Stress and Renal Injury in Diabetes. J Am Soc Nephrol, 27(7), 2021-2034. doi:10.1681/asn.2014090898
    Smeets, B., Kuppe, C., Sicking, E. M., Fuss, A., Jirak, P., van Kuppevelt, T. H., . . . Moeller, M. J. (2011). Parietal epithelial cells participate in the formation of sclerotic lesions in focal segmental glomerulosclerosis. J Am Soc Nephrol, 22(7), 1262-1274. doi:10.1681/asn.2010090970
    Steffes, M. W., Schmidt, D., McCrery, R., & Basgen, J. M. (2001). Glomerular cell number in normal subjects and in type 1 diabetic patients. Kidney Int, 59(6), 2104-2113. doi:10.1046/j.1523-1755.2001.00725.x
    Sun, G., Reddy, M. A., Yuan, H., Lanting, L., Kato, M., & Natarajan, R. (2010). Epigenetic histone methylation modulates fibrotic gene expression. J Am Soc Nephrol, 21(12), 2069-2080. doi:10.1681/asn.2010060633
    Weavers, H., Prieto-Sanchez, S., Grawe, F., Garcia-Lopez, A., Artero, R., Wilsch-Brauninger, M., . . . Denholm, B. (2009). The insect nephrocyte is a podocyte-like cell with a filtration slit diaphragm. Nature, 457(7227), 322-326. doi:10.1038/nature07526
    White, K. E., Bilous, R. W., Marshall, S. M., El Nahas, M., Remuzzi, G., Piras, G., . . . Viberti, G. (2002). Podocyte number in normotensive type 1 diabetic patients with albuminuria. Diabetes, 51(10), 3083-3089.
    Woroniecka, K. I., Park, A. S., Mohtat, D., Thomas, D. B., Pullman, J. M., & Susztak, K. (2011). Transcriptome analysis of human diabetic kidney disease. Diabetes, 60(9), 2354-2369. doi:10.2337/db10-1181
    Wu, C. C., Chen, J. S., Lu, K. C., Chen, C. C., Lin, S. H., Chu, P., . . . Lin, Y. F. (2010). Aberrant cytokines/chemokines production correlate with proteinuria in patients with overt diabetic nephropathy. Clin Chim Acta, 411(9-10), 700-704. doi:10.1016/j.cca.2010.01.036
    Zhang, F., Zhao, Y., & Han, Z. (2013). An in vivo functional analysis system for renal gene discovery in Drosophila pericardial nephrocytes. J Am Soc Nephrol, 24(2), 191-197. doi:10.1681/ASN.2012080769
    Zhuang, S., Shao, H., Guo, F., Trimble, R., Pearce, E., & Abmayr, S. M. (2009). Sns and Kirre, the Drosophila orthologs of Nephrin and Neph1, direct adhesion, fusion and formation of a slit diaphragm-like structure in insect nephrocytes. Development, 136(14), 2335-2344. doi:10.1242/dev.031609

    無法下載圖示 校內:2023-08-21公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE