| 研究生: |
呂致翰 Lu, Chih-Han |
|---|---|
| 論文名稱: |
流動模式對交錯排列之板鰭圓管熱交換器的熱傳效能影響 Effect of Flow Model on Heat Transfer Characteristics of Staggered Plate Fin and Tube Heat Exchangers |
| 指導教授: |
陳寒濤
Chen, Han-Taw |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 100 |
| 中文關鍵詞: | 數值逆算法 、實驗方法 、板鰭管式熱交換器 、熱傳性能 |
| 外文關鍵詞: | inverse scheme, experimental method, plate finned-tube heat exchangers, heat-transfer characteristics |
| 相關次數: | 點閱:176 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文以實驗方法與數值逆算法來預測於改變圓管上下距離、鰭片間距及外界風速下,四支圓管為交錯排列(Staggered arrangement)之板鰭管式熱交換器的平均熱傳係數 與等溫平均熱傳係數 ,其中也探討在鰭片後方增加出口風扇對於熱傳效能之影響。此四支圓管的溫度可能都不相同,因此鰭片上之熱傳係數可能為不均勻分佈,故於進行數值逆算法分析之前,將先整個鰭片被分割成數個子區域,且每個子區域上之平均熱傳係數假設為一未知的常數。而後,本文以有限差分法(Finite difference method)配合最小平方法(Least squares scheme)、外界空氣溫度量測值及鰭片溫度量測值之逆算法來求得本文結果。結果顯示於自然對流條件下, 及 會隨著鰭片間距以及圓管上下距離的增加而增加。於強迫對流條件下, 及 會隨著外界風速、鰭片間距及圓管間距離增加而增加。其中在兩種條件下,因圓管間距離增加所造成 增加的幅度會隨著圓管間距離的增加而變小。所以本文發現,在圓管間距離較大時,散熱的效果較佳。其他的發現為於第二排圓管後方之子區域的熱傳係數一般皆會比其他區域的值低,此乃由於此下游區域會有低速的尾流區發生所致,所以增加出口風扇從本文結果發現可以有效改善此問題。為了證明本文結果之可靠性,本文之 值將與目前存在之經驗公式與文獻或商業計算流體力學軟體所求得之結果相比較。此外,本文也利用量測出的實驗數據配合商用軟體Fluent以求得鰭片間之流場的流動狀態及鰭片上溫度分布的情形。
The present study applies the experimental and numerical inverse methods to predict the average heat transfer coefficient and heat transfer coefficient under the isothermal situation on a vertical square fin of the four-tube plate finned-tube heat exchangers for staggered arrangements and various tube pitch, fin spacings and air velocities, and also investigate the effect on heat transfer characteristics by using another fan behind the fins. These tubes may not have the same temperature in the present study. Due to the non-uniform distribution of the heat transfer coefficient, the whole plate fin is divided into several sub-fin regions before performing the inverse scheme, and the average heat transfer coefficient on each sub-fin region is assumed to be unknown. Later, the inverse scheme of the finite difference method in conjunction with the Least squares scheme and experimental measured temperatures is applied to determine the present results. Results show that and in nature convection increase with increasing the tube pitch and fin spacing S. However, and in force convection increase with increasing the , S and air velocity, under both conditions, Due to the increasing tube pitch caused by the increased amplitude becomes smaller with increasing distance between tube. So present study shows the larger tube pitch the better heat dissipation we have. Other findings are that the average heat transfer coefficients in the upstream and wake fin regions of the 2nd row may be generally lower than these on other sub-fin regions, so we use the outlet fan to improve this problem. In order to validate the accuracy and reliability of the present results, the values are compared with those obtained from the existing correlations or computational fluid dynamics commercial code. Besides, the present study also applies the commercial software, Fluent, in conjunction with the present experimental data to obtain the inter-fin flow field of the plate finned-tube heat exchanger and temperature measurements at various measurement locations of the fin.
參考文獻
[1] W. A. Khan, J. R. Culham, M. M. Yovanovich, “Analytical model for convection heat transfer from tube banks,” J. Thermophysics Heat Transfer, vol. 20, pp. 720-727, 2006.
[2] E. C. Rosman, P. Carajilescov, F. E. M. Saboya, “Performance of one and two-row tube and plate fin heat transfer,” ASME J. Heat Transfer, vol. 106, pp. 627-632, 1984.
[3] H. Ay, J. Y. Jang, J. N. Yeh, “Local heat transfer measurements of plate finned-tube heat exchangers by infrared thermography,” Int. J. Heat Mass Transfer, vol. 45, pp. 4069-4078, 2002.
[4] D. Bougeard, “Infrared thermography investigation of local heat transfer in a plate fin and two-tube rows assembly,” Int. J. Heat Fluid Flow, vol. 28, pp. 988–1002, 2007.
[5] L. A. O. Rocha, F. E. M. Saboya, J. V. C. Vargas, “A comparative study of elliptical and circular sections in one- and two-row tubes and plate fin heat exchangers,” Int. J. Heat Fluid Flow, vol. 18, pp. 247-252, 1997.
[6] S. M. Saboya, F. E. M. Saboya, “Experiments on elliptic sections in one- and two-row arrangements of plate fin and tube heat exchangers,” Exp. Thermal Fluid Science, vol. 24, pp. 67-75, 2001.
[7] M. Lee, Y. H. Kim, H. Lee, Y. C. Kim, “Air-side heat transfer characteristics of flat plate finned-tube heat exchangers with large fin pitches under frosting conditions,” Int. J. Heat Mass Transfer, vol. 53, pp. 2655–2661, 2010.
[8] C. H. Huang, I. C. Yuan, H. Ay, “An experimental study in determining the local heat transfer coefficients for the plate finned-tube heat exchangers,” Int. J. Heat Mass Transfer, vol. 52, pp. 3057-3066, 2009.
[9] Y. H. Kim, Y. C. Kim, “Heat transfer characteristics of flat plate finned-tube heat exchangers with large fin pitch,” Int. J. Refrig., vol. 28, pp. 851–858, 2005.
[10] X. P. Ouyang, G. P. Xiong, “Comparison study of thermal performance of plate fin type heat exchanger with aligned and staggered arrangements,” Chinese J. Power Eng., vol. 25, pp. 271-274, 2005.
[11] H. T. Chen, J. C. Chou, “Investigation of natural-convection heat transfer coefficient on a vertical square fin of finned-tube heat exchangers,” Int. J. Heat Mass Transfer, vol. 49, pp. 3034–3044, 2006.
[12] H. T. Chen, J. C. Chou, H. C. Wang, “Estimation of heat transfer coefficient on the vertical plate fin of finned-tube heat exchangers for various air speeds and fin spacings,” Int. J. Heat Mass Transfer, vol. 50, pp. 45–57, 2007.
[13] 賴健榮, “四圓管板鰭管式熱交換器之熱傳特性研究,” 成功大學機械工程研究所碩士論文, 2011.
[14] Tony W. H. Sheu, S. F. Tsai, “A comparison study on fin surfaces in finned-tube heat exchangers,” Int. J. Numer. Method H., Vol. 9, No. 1, pp. 92-106, 1999.
[15] J. Y. Kim, T. H. Song, “Effect of tube alignment on the heat/mass transfer from a plate fin and two-tube assembly: naphthalene sublimation results,” Int. J. Heat Mass Transfer, vol. 46, pp. 3051–3059, 2003
[16] 于承廷, “並列式板鰭管式熱交換器之熱傳特性預測,” 成功大學機械工程研究所碩士論文, 2010.
[17] A. Bejan, “Heat Transfer,” John Wiley & Sons, New York, pp. 53-62, 1993.
[18] R. L. Webb, “Principles of Enhanced Heat Transfer,”:John Wiley & Sons, New York, pp. 148-151, 1994
[19] F. P. Incropera, D. P. Dewitt, T. L. Bergman, A. S. Lavine, “Fundamentals of Heat and Mass Transfer,” John Wiley & sons (Asia), New York, 2007.
[20] R. S. Matos, J. V. C. Vargas, T. A. Laursen, A. Bejan, “Optimally staggered finned circular and elliptic tubes in forced convection,” Int. J. Heat Mass Transfer, Vol. 47, pp. 1347-1359, 2004.
[21] 詹士緯, “二行交錯排列之板鰭橢圓管熱交換器的熱傳特性研究,” 成功大學機械工程研究所碩士論文, 2012.
[22] C. W. Lu, J. M. Huang, W. C. Nien, C. C. Wang, “A numerical investigation of the geometric effects on the performance of plate finned-tube heat exchanger,” Energy. C. M., Vol. 52, pp. 1638-1643, 2011.
[23] M. S. Mon, U. Gross, “Numerical study of fin-spacing effects in annular-finned tube heat exchangers,” Int. J. Heat Fluid Flow, vol. 47, pp. 1953-1964, 2004.
[24] R. Borrajo-Peláez, J. Ortega-Casanova, J.M. Cejudo-López, “A three-dimensional numerical study and comparison between the air side model and the air/water side model of a plain fin-and-tube heat exchanger,” A. T. E., Vol. 30, pp. 1608-1615, 2010.
[25] E. M. Sparrow, J. M. Ramsey, “Heat transfer and pressure drop for staggered wall-attached array of cylinders with tip clearance,” Int. J. Heat Mass Transfer, vol. 21, pp. 1369–1377, 1978.