簡易檢索 / 詳目顯示

研究生: 呂致翰
Lu, Chih-Han
論文名稱: 流動模式對交錯排列之板鰭圓管熱交換器的熱傳效能影響
Effect of Flow Model on Heat Transfer Characteristics of Staggered Plate Fin and Tube Heat Exchangers
指導教授: 陳寒濤
Chen, Han-Taw
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 100
中文關鍵詞: 數值逆算法實驗方法板鰭管式熱交換器熱傳性能
外文關鍵詞: inverse scheme, experimental method, plate finned-tube heat exchangers, heat-transfer characteristics
相關次數: 點閱:176下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文以實驗方法與數值逆算法來預測於改變圓管上下距離、鰭片間距及外界風速下,四支圓管為交錯排列(Staggered arrangement)之板鰭管式熱交換器的平均熱傳係數 與等溫平均熱傳係數 ,其中也探討在鰭片後方增加出口風扇對於熱傳效能之影響。此四支圓管的溫度可能都不相同,因此鰭片上之熱傳係數可能為不均勻分佈,故於進行數值逆算法分析之前,將先整個鰭片被分割成數個子區域,且每個子區域上之平均熱傳係數假設為一未知的常數。而後,本文以有限差分法(Finite difference method)配合最小平方法(Least squares scheme)、外界空氣溫度量測值及鰭片溫度量測值之逆算法來求得本文結果。結果顯示於自然對流條件下, 及 會隨著鰭片間距以及圓管上下距離的增加而增加。於強迫對流條件下, 及 會隨著外界風速、鰭片間距及圓管間距離增加而增加。其中在兩種條件下,因圓管間距離增加所造成 增加的幅度會隨著圓管間距離的增加而變小。所以本文發現,在圓管間距離較大時,散熱的效果較佳。其他的發現為於第二排圓管後方之子區域的熱傳係數一般皆會比其他區域的值低,此乃由於此下游區域會有低速的尾流區發生所致,所以增加出口風扇從本文結果發現可以有效改善此問題。為了證明本文結果之可靠性,本文之 值將與目前存在之經驗公式與文獻或商業計算流體力學軟體所求得之結果相比較。此外,本文也利用量測出的實驗數據配合商用軟體Fluent以求得鰭片間之流場的流動狀態及鰭片上溫度分布的情形。

    The present study applies the experimental and numerical inverse methods to predict the average heat transfer coefficient and heat transfer coefficient under the isothermal situation on a vertical square fin of the four-tube plate finned-tube heat exchangers for staggered arrangements and various tube pitch, fin spacings and air velocities, and also investigate the effect on heat transfer characteristics by using another fan behind the fins. These tubes may not have the same temperature in the present study. Due to the non-uniform distribution of the heat transfer coefficient, the whole plate fin is divided into several sub-fin regions before performing the inverse scheme, and the average heat transfer coefficient on each sub-fin region is assumed to be unknown. Later, the inverse scheme of the finite difference method in conjunction with the Least squares scheme and experimental measured temperatures is applied to determine the present results. Results show that and in nature convection increase with increasing the tube pitch and fin spacing S. However, and in force convection increase with increasing the , S and air velocity, under both conditions, Due to the increasing tube pitch caused by the increased amplitude becomes smaller with increasing distance between tube. So present study shows the larger tube pitch the better heat dissipation we have. Other findings are that the average heat transfer coefficients in the upstream and wake fin regions of the 2nd row may be generally lower than these on other sub-fin regions, so we use the outlet fan to improve this problem. In order to validate the accuracy and reliability of the present results, the values are compared with those obtained from the existing correlations or computational fluid dynamics commercial code. Besides, the present study also applies the commercial software, Fluent, in conjunction with the present experimental data to obtain the inter-fin flow field of the plate finned-tube heat exchanger and temperature measurements at various measurement locations of the fin.

    目錄 摘要 I ABSTRACT II 誌謝 IV 目錄 V 表目錄 VII 圖目錄 IX 符號說明 XIII 第一章 緒論 1 1-1 研究背景 1 1-2 文獻回顧 3 1-3 研究目的 6 1-4 研究重點與本文架構 6 第二章 理論分析與逆算法之數學模式 8 2-1 簡介 8 2-2 數學模式建立 9 2-3 數值分析方法 11 2-4 逆向熱傳導問題 13 2-5 溫度量測誤差的影響 16 第三章 實驗操作與數據分析 18 3-1 簡介 21 3-2 實驗設備 22 3-3 實驗步驟 24 3-4 鰭片上之熱物理量 25 3-5 實驗組別及操作條件 26 3-6 實驗結果與分析 27 第四章 數值模擬分析 47 4-1 簡介 53 4-2 統御方程式 54 4-3 邊界條件 56 4-4 軟體設定 57 4-5 模擬結果與討論 57 第五章 綜合結論與未來展望 96 5-1 實驗與數值模擬結果 96 5-2 綜合結論 97 5-3 未來發展方向與建議 97 參考文獻 98 表目錄 表3-1 本文之物理量 34 表3-2對應S = 10 mm及不同 之自然對流溫度量測值及本文預測值 35 表3-3對應S = 15 mm及不同 之自然對流溫度量測值及本文預測值 36 表3-4對應 = 36mm、S = 10 mm及不同風速之溫度量測值及本文預測值 37 表3-5對應 = 36mm、S = 15 mm及不同風速之溫度量測值及本文預測值 38 表3-6對應 = 45mm、S = 10 mm及不同風速之溫度量測值及本文預測值 39 表3-7對應 = 45mm、S = 15 mm及不同風速之溫度量測值及本文預測值 40 表3-8對應 = 54mm、S = 10 mm及不同風速之溫度量測值及本文預測值 41 表3-9對應 = 54mm、S = 15 mm及不同風速之溫度量測值及本文預測值 42 表3-10對應 = 36 mm、S = 10各條件之溫度量測值比較 43 表3-11對應 = 36 mm、S = 15各條件之溫度量測值比較 44 表3-12對應不同S、 與 之 值的比較 45 表3-13對應 = 36 mm之各種條件的速度流場 45 表3-14於 = 36 mm及不同S值下,各種條件對本文預測值之影響 45 表3-15對應 = 54mm、 = 1.0 m/s之本文預測值與文獻[13]之數值結果的比較 46 表4-1對應 = 36mm、S = 10 mm之本文預測值與模擬結果的比較 64 表4-2對應 = 36mm、S = 15 mm之本文預測值與模擬結果的比較 65 表4-3對應 = 45mm、S = 10 mm之本文預測值與模擬結果的比較 66 表4-4對應 = 45mm、S = 15 mm之本文預測值與模擬結果的比較 67 表4-5對應 = 54mm、S = 10 mm之本文預測值與模擬結果的比較 68 表4-6對應 = 54mm、S = 15 mm之本文預測值與模擬結果的比較 69 表4-7對應 = 45mm、S = 15 mm、 =179264及各種流動模式下之結果的比較 70 表4-8對應 = 45mm、S = 15 mm、 =183692及各種流動模式下之結果的比較 71 表4-9對應不同S、 與 之 值的比較 72 表4-10於 = 36 mm及不同S值下,各種條件對本文預測值與模擬值比較 72 圖目錄 圖2-1交錯排列 = 36 mm之板鰭管式熱交換器的幾何形狀示意圖 18 圖2-2交錯排列 = 45 mm之板鰭管式熱交換器的幾何形狀示意圖 18 圖2-3交錯排列 = 54 mm之板鰭管式熱交換器的幾何形狀示意圖 19 圖2-4 = 36 mm之板鰭管式熱交換器的溫度量測位置分佈圖 19 圖2-5 = 45 mm之板鰭管式熱交換器的溫度量測位置分佈圖 20 圖2-6 = 54 mm之板鰭管式熱交換器的溫度量測位置分佈圖 20 圖3-1風洞系統之示意圖 47 圖3-2風洞系統之外視圖 48 圖3-3板鰭管式熱交換器的示意圖 48 圖3-4自然對流、在不同 及S下之之本文 值的比較 49 圖3-5交錯排列之板鰭管式熱交換器的物理幾何模型示意圖 50 圖3-6 S = 10 mm、不同 與風速之本文 值與文獻之比較 51 圖3-7 S = 15 mm、不同 與風速之本文 值與文獻之比較 51 圖3-8風洞系統增加出口風扇之示意圖 52 圖4-1交錯排列之板鰭管式熱交換器的物理幾何示意圖 62 圖4-2 Fluent軟體分析之架構流程圖 63 圖4-3 = 36 mm、S = 10 mm與 = 1.0 m/s之溫度分布圖 73 圖4-4 = 36 mm、S= 10 mm與 = 2.0 m/s之溫度分布圖 73 圖4-5 = 36 mm、S = 15 mm與 = 1.0 m/s之溫度分布圖 74 圖4-6 = 36 mm、S = 15 mm與 = 2.0 m/s之溫度分布圖 74 圖4-7 = 45 mm、S = 10 mm與 = 1.0 m/s之溫度分布圖 75 圖4-8 = 45 mm、S = 10 mm與 = 2.0 m/s之溫度分布圖 75 圖4-9 = 45 mm、S = 15 mm與 = 1.0 m/s之溫度分布圖 76 圖4-10 = 45 mm、S = 15 mm與 = 2.0 m/s之溫度分布圖 76 圖4-11 = 54 mm、S = 10 mm與 = 1.0 m/s之溫度分布圖 77 圖4-12 = 54 mm、S = 10 mm與 = 2.0 m/s之溫度分布圖 77 圖4-13 = 54 mm、S = 15 mm與 = 1.0 m/s之溫度分布圖 78 圖4-14 = 54 mm、S = 15 mm與 = 2.0 m/s之溫度分布圖 78 圖4-15 = 36 mm、S = 10 mm與 = 1.0 m/s之熱傳係數分布圖 79 圖4-16 = 36 mm、S = 10 mm與 = 2.0 m/s之熱傳係數分布圖 79 圖4-17 = 36 mm、S = 15 mm與 = 1.0 m/s之熱傳係數分布圖 80 圖4-18 = 36 mm、S = 15 mm與 = 2.0 m/s之熱傳係數分布圖 80 圖4-19 = 45 mm、S = 10 mm與 = 1.0 m/s之熱傳係數分布圖 81 圖4-20 = 45 mm、S = 10 mm與 = 2.0 m/s之熱傳係數分布圖 81 圖4-21 = 45 mm、S = 15 mm與 = 1.0 m/s之熱傳係數分布圖 82 圖4-22 = 45 mm、S = 15 mm與 = 2.0 m/s之熱傳係數分布圖 82 圖4-23 = 54 mm、S = 10 mm與 = 1.0 m/s之熱傳係數分布圖 83 圖4-24 = 54 mm、S = 10 mm與 = 2.0 m/s之熱傳係數分布圖 83 圖4-25 = 54 mm、S = 15 mm與 = 1.0 m/s之熱傳係數分布圖 84 圖4-26 = 54 mm、S = 15 mm與 = 2.0 m/s之熱傳係數分布圖 84 圖4-27 = 36 mm、S = 15 mm與 = 1.0 m/s之速度分布圖 85 圖4-28 = 45 mm、S = 15 mm與 = 1.0 m/s之速度分布圖 85 圖4-29 = 54 mm、S = 15 mm與 = 1.0 m/s之速度分布圖 85 圖4-30 = 36 mm、S = 15 mm與 = 2.0 m/s之速度分布圖 86 圖4-31 = 45 mm、S = 15 mm與 = 2.0 m/s之速度分布圖 86 圖4-32 = 54 mm、S = 15 mm與 = 2.0 m/s之速度分布圖 86 圖4-33 = 36 mm、S = 15 mm與 = 1.0 m/s之壓力分布圖 87 圖4-34 = 45 mm、S = 15 mm與 = 1.0 m/s之壓力分布圖 87 圖4-35 = 54 mm、S = 15 mm與 = 1.0 m/s之壓力分布圖 87 圖4-36 = 36 mm、S = 15 mm與 = 2.0 m/s之壓力分布圖 88 圖4-37 = 45 mm、S = 15 mm與 = 2.0 m/s之壓力分布圖 88 圖4-38 = 54 mm、S = 15 mm與 = 2.0 m/s之壓力分布圖 88 圖4-39 = 36 mm、S = 15 mm與自然對流之速度分布圖 89 圖4-40 = 45 mm、S = 15 mm與自然對流之速度分布圖 89 圖4-41 = 54 mm、S = 15 mm與自然對流之速度分布圖 89 圖4-42 = 36 mm、S = 10 mm、Case B之溫度分布圖 90 圖4-43 = 36 mm、S = 10 mm、Case C之溫度分布圖 90 圖4-44 = 36 mm、S = 15 mm、Case B之溫度分布圖 91 圖4-45 = 36 mm、S = 15 mm、Case C之溫度分布圖 91 圖4-46 = 36 mm、S = 10 mm、Case B之熱傳係數分布圖 92 圖4-47 = 36 mm、S = 10 mm、Case C之熱傳係數分布圖 92 圖4-48 = 36 mm、S = 15 mm、Case B之熱傳係數分布圖 93 圖4-49 = 36 mm、S = 15 mm、Case C之熱傳係數分布圖 93 圖4-50 = 36 mm、S = 15 mm、Case B之速度向量圖 94 圖4-51 = 36 mm、S = 15 mm、Case C之速度向量圖 94

    參考文獻
    [1] W. A. Khan, J. R. Culham, M. M. Yovanovich, “Analytical model for convection heat transfer from tube banks,” J. Thermophysics Heat Transfer, vol. 20, pp. 720-727, 2006.
    [2] E. C. Rosman, P. Carajilescov, F. E. M. Saboya, “Performance of one and two-row tube and plate fin heat transfer,” ASME J. Heat Transfer, vol. 106, pp. 627-632, 1984.
    [3] H. Ay, J. Y. Jang, J. N. Yeh, “Local heat transfer measurements of plate finned-tube heat exchangers by infrared thermography,” Int. J. Heat Mass Transfer, vol. 45, pp. 4069-4078, 2002.
    [4] D. Bougeard, “Infrared thermography investigation of local heat transfer in a plate fin and two-tube rows assembly,” Int. J. Heat Fluid Flow, vol. 28, pp. 988–1002, 2007.
    [5] L. A. O. Rocha, F. E. M. Saboya, J. V. C. Vargas, “A comparative study of elliptical and circular sections in one- and two-row tubes and plate fin heat exchangers,” Int. J. Heat Fluid Flow, vol. 18, pp. 247-252, 1997.
    [6] S. M. Saboya, F. E. M. Saboya, “Experiments on elliptic sections in one- and two-row arrangements of plate fin and tube heat exchangers,” Exp. Thermal Fluid Science, vol. 24, pp. 67-75, 2001.
    [7] M. Lee, Y. H. Kim, H. Lee, Y. C. Kim, “Air-side heat transfer characteristics of flat plate finned-tube heat exchangers with large fin pitches under frosting conditions,” Int. J. Heat Mass Transfer, vol. 53, pp. 2655–2661, 2010.
    [8] C. H. Huang, I. C. Yuan, H. Ay, “An experimental study in determining the local heat transfer coefficients for the plate finned-tube heat exchangers,” Int. J. Heat Mass Transfer, vol. 52, pp. 3057-3066, 2009.
    [9] Y. H. Kim, Y. C. Kim, “Heat transfer characteristics of flat plate finned-tube heat exchangers with large fin pitch,” Int. J. Refrig., vol. 28, pp. 851–858, 2005.
    [10] X. P. Ouyang, G. P. Xiong, “Comparison study of thermal performance of plate fin type heat exchanger with aligned and staggered arrangements,” Chinese J. Power Eng., vol. 25, pp. 271-274, 2005.
    [11] H. T. Chen, J. C. Chou, “Investigation of natural-convection heat transfer coefficient on a vertical square fin of finned-tube heat exchangers,” Int. J. Heat Mass Transfer, vol. 49, pp. 3034–3044, 2006.
    [12] H. T. Chen, J. C. Chou, H. C. Wang, “Estimation of heat transfer coefficient on the vertical plate fin of finned-tube heat exchangers for various air speeds and fin spacings,” Int. J. Heat Mass Transfer, vol. 50, pp. 45–57, 2007.
    [13] 賴健榮, “四圓管板鰭管式熱交換器之熱傳特性研究,” 成功大學機械工程研究所碩士論文, 2011.
    [14] Tony W. H. Sheu, S. F. Tsai, “A comparison study on fin surfaces in finned-tube heat exchangers,” Int. J. Numer. Method H., Vol. 9, No. 1, pp. 92-106, 1999.
    [15] J. Y. Kim, T. H. Song, “Effect of tube alignment on the heat/mass transfer from a plate fin and two-tube assembly: naphthalene sublimation results,” Int. J. Heat Mass Transfer, vol. 46, pp. 3051–3059, 2003
    [16] 于承廷, “並列式板鰭管式熱交換器之熱傳特性預測,” 成功大學機械工程研究所碩士論文, 2010.
    [17] A. Bejan, “Heat Transfer,” John Wiley & Sons, New York, pp. 53-62, 1993.
    [18] R. L. Webb, “Principles of Enhanced Heat Transfer,”:John Wiley & Sons, New York, pp. 148-151, 1994
    [19] F. P. Incropera, D. P. Dewitt, T. L. Bergman, A. S. Lavine, “Fundamentals of Heat and Mass Transfer,” John Wiley & sons (Asia), New York, 2007.
    [20] R. S. Matos, J. V. C. Vargas, T. A. Laursen, A. Bejan, “Optimally staggered finned circular and elliptic tubes in forced convection,” Int. J. Heat Mass Transfer, Vol. 47, pp. 1347-1359, 2004.
    [21] 詹士緯, “二行交錯排列之板鰭橢圓管熱交換器的熱傳特性研究,” 成功大學機械工程研究所碩士論文, 2012.
    [22] C. W. Lu, J. M. Huang, W. C. Nien, C. C. Wang, “A numerical investigation of the geometric effects on the performance of plate finned-tube heat exchanger,” Energy. C. M., Vol. 52, pp. 1638-1643, 2011.
    [23] M. S. Mon, U. Gross, “Numerical study of fin-spacing effects in annular-finned tube heat exchangers,” Int. J. Heat Fluid Flow, vol. 47, pp. 1953-1964, 2004.
    [24] R. Borrajo-Peláez, J. Ortega-Casanova, J.M. Cejudo-López, “A three-dimensional numerical study and comparison between the air side model and the air/water side model of a plain fin-and-tube heat exchanger,” A. T. E., Vol. 30, pp. 1608-1615, 2010.
    [25] E. M. Sparrow, J. M. Ramsey, “Heat transfer and pressure drop for staggered wall-attached array of cylinders with tip clearance,” Int. J. Heat Mass Transfer, vol. 21, pp. 1369–1377, 1978.

    下載圖示 校內:2016-07-10公開
    校外:2016-07-10公開
    QR CODE