| 研究生: |
沈國任 Shen, Kuo-Jen |
|---|---|
| 論文名稱: |
氧化鋅一維奈米結構之製備 The growth of Zinc Oxide material with one-dimensional nanostructure |
| 指導教授: |
洪昭南
Hong, Chau-Nan Franklin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 154 |
| 中文關鍵詞: | 電場輔助成長 、奈米結構 、氧化鋅 、垂直準直性 |
| 外文關鍵詞: | vertical alignment, nanostructure, ZnO, electrical field assist growth |
| 相關次數: | 點閱:72 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
在本論文中主要探討三個研究主題,第一個是氧化鋅一維奈米奈米結構的成長,第二部份是高準直性氧化鋅奈米線的製備,最後是電場輔助奈米線的排列與成長。
首先,在氧化鋅奈米結構的成長中,探討氧氣濃度與基板溫度對氧化鋅奈米結構型態上之變化。在本研究中採用金屬鋅粉作為鋅反應前驅物,由實驗中發現:在高氧氣濃度時,氧化鋅結構為奈米線,沿[0001]成長;而在低氧氣濃度時,氧化鋅結構轉變為奈米帶,沿[0001]或 成長且奈米帶的寬度隨著氧氣濃度的降低而增加。而由螢光光譜圖譜中,顯示奈米帶比奈米線具有較少的結構缺陷。當基板溫度降低時,氧化鋅結構為膜狀結構;而在成長溫度的探討中,當基板溫度增加時,氧化鋅奈米線的成長密度降低。無論是高溫或低溫成長之氧化鋅結構,皆沿著[0001]成長。另外,在螢光光譜分析結果,顯示高溫成長的奈米線具有較少的結構缺陷。
第二是高準直性氧化鋅奈米線的製備,主要探討不同的成長條件與基板,對於高準直性氧化鋅奈米線的影響。在不同條件下,鍍在鍍金的矽基板、c-plane sapphire基板,以及鋁摻雜氧化鋅薄膜,除了c-plane sapphire基板上的奈米線沿著特定角度成長外,其餘兩種基板皆可成長準直性佳的奈米線,這是由於氧化鋅與sapphire 基板之晶格錯排所造成之影響。而在鍍金之基板,因在基板先沈積氧化鋅緩衝層,而得以成長準直性佳的氧化鋅奈米線。另外,在探討不同晶種上成長高準直性氧化鋅奈米線的研究上,發現使用氧化鋅為晶種的基板,其奈米線頂端成尖狀。而使用金觸媒為晶種的基板,其奈米線頂端為六角型。造成此種型態上的差異,主要是晶面上的成長速度之差異。
最後,在探討電場在奈米線排列的研究方面。初期將預先成長的氧化鋅奈米線,藉由介電泳的方式排列於指叉狀電極間。當施加電場大於8.8Vp-p 及頻率提升至1MHz 時,其奈米線可均勻排列在電極兩端。但是,將排列規則的奈米線製作成電晶體元件時,發現其元件兩端特性為蕭基特接觸,而三端元件則無控制之行為。之後,將指叉狀電極直接置於高溫爐管中進行氧化鋅奈米線成長,並同時於成長時在指叉狀電極上施加電壓,希望藉此電場得以將奈米線沿特定方向排列與成長。當施加電場於電極兩端時,可發現奈米線集中於電極兩端。當電場強度降低時,奈米線的密度也隨之降低,但仍可觀察到電極兩旁具有大量的晶種。再把成長規則的奈米線製作成電晶體元件時,發現其兩端特性成歐姆接觸,但三端元件仍無控制之特性。
Abstract
Three main subjects on the growth of Zinc oxide with one-dime nsional nanostructure have be studied. The first part is the effect of vapor species in controlling ZnO nanoarchitectures. The second one is the influence of substrates upon the vertical aligned ZnO nanowires. The last section is the effect of electrical field on the direction growth of ZnO NW.
At first, the architectures of ZnO nanomaterials could be controlled by varying the composition of O2 gas and substrate temperature during growths. At higher O2 concentration, ZnO nanowires growing along [0001] were synthesized. At lower O2 concentration, ZnO nanobelts growing along [0001] or were synthesized. The width of ZnO nanobelts increased with the reduction of O2 concentration. Photo- lumen escence(PL) spectra measurement indicated that ZnO nanobelts contained a lower concentration of structure defects than ZnO nanowires. During the substrate temperature decreased to 550℃, the morphology of ZnO became thin-film structure. However, the substrate temperature increased to 900℃, the densities of ZnO nanowires decreased. Regardless of temperature increased or decreased, ZnO nanowires grow along [0001]. PL spectra analysis indicated that ZnO nanowire, fabricated at high temperature, contained a lower concentration of structure defects
Secondly, the vertical aligned ZnO nanowires could be controlled by varying the conditions and substrates during growth. At different conditions, the vertical aligned ZnO nanowire grown on the surface of Si substrates containing Au catalyst. The major factor is the ZnO buffer layer formed on Si substrate. Then, growing the vertical aligned ZnO nanowires on the different substrates, including Si substrates containing Au catalyst, c-plane sapphire containing Au catalyst, and Al-doped ZnO thin film glass substrate. Beside, nanowire grew in specific direction on the c-plane sapphire containing Au catalyst. The vertical aligned ZnO nanowires was also grew on the other substrates. The variation of morphology was caused by lattice mismatch. Furthermore, we also studied the influence of different seed layer on the nanostructure of ZnO of ZnO nanowire. Obviously, the nanowire tip was sharp when the ZnO nanoparticle as the seed layer ; when the Au nanoparticle as seed layer, the nanowire tip was formed hexagonal. We deduced that the growth rate of different crystal surfaces were main parameter on the formation of ZnO nanostructure.
The last part is to study the effect of electrical field on the growth direction of ZnO nanowires. In this study, dielectrophoresis force was used align nanowires, fabricated by furnace, between inter-digital electr- odes. When E-field increased to 8.8 Vp-p and the frequency increased to 1MHz, the alignment of NWs become obviously. But, when the aligned ZnO nanowires were applied on the manufacture of transistor, the electrical behavior ZnO nanowires and electrode was schottky contact , and the transistor characteristics could not be observed. In order to directional growth ZnO nanowires, an electrical field was applied on the inter-digital electrodes during ZnO nanowires growth. When the electrical field was applied between the inter-digital electrodes, the growth of ZnO nanowire focused on the edge of electrodes. Although the densities of ZnO nanowires on the edge of electrodes were decreased, when the magnitude of electrical field were decreased, many nucleation sites were existed on the edge of electrodes. After growth , we used the aligned ZnO nanowires to fabricate transistor. The results of transistor characteristics shown that the electrodes and nanowires was ohimc contact. However, the gate voltage still could not be controlled.
第六章 參考文獻
[1] Sumio Iijima, Nature, 354, 56 (1991)
[2] Y. Cui, Z Zhong, D. Wang,W. U. Wang, Charles M. Lieber, Nano Lett. 3, 149 (2003)
[3] Fang Qian, Silvija Gradecˇak, Yat Li, Cheng-Yen Wen, C. M. Lieber, Nano Lett. 5, 2287 (2005)
[4] P. Yang, H. Yan, S. Mao,R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, H. J. Choi, Adv. Funct. Mater. 12,323 (2002)
[5]M. Law, H. Kind, F. Kim ,B. Messer, P. Yang, Angew. Chem. Int. Ed. 41, 2405 (2002)
[6]Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayer, B. Gates, Y. Ying, F. Kim,
H. Yan, Adv. Mater. 15, 253 (2003)
[7] R.S. Wanger, W. C. Ellis, Appl.Phys. Lett. 4, 89 (10964)
[8] X. F. Duan, C. M. Lieber, Adv. Mater. 12, 298 (2000).
[9] X.F. Duan, C. M. Lieber, J. Am. Chem. Soc. 122, 188 (2000).
[10]Wu Y, Yang P., J. Am. Chem. Soc. 123, 3165 (2001)
[11] M. Yazawa, M. Koguchi, A. Muto, M. Ozawa, K. Hiruma, Appl. Phys. Lett. 61, 2051 (1992).
[12] A. M. Morales, C. M. Lieber, Science, 279, 208 (1998).
[13] M. H. Huang, Y. Wu, H. Feick, N. Tran, Eicke Weber, P. Yang, Adv. Mater. 13, 113 (2001).
[14] Y. C. Choi, W. S. Kim, Y. S. Park, S. M. Lee, D. J. Bae, Y. H. Lee, G.-S. Park, W. B. Choi, N. S. Lee, J. M. Kim, Adv. Mater. 12, 746 (2000).
[15] J. Hu, M. Ouyang, P. Yang, C. M. Lieber, Nature, 399, 48 (1999).
[16] H. Omi , T. Ogino, Appl. Phys. Lett. 71, 2163 (1997).
[17] A. B. Greytak, L. J. Lauhon, M. S. Gudiksen, C. M. Lieber, Appl. Phys. Lett. 84, 4176 (2004).
[18] S. H. Yun, A. Dibos,J. Z. Wu, Do-Kyung Kim, Appl. Phys. Lett. 84, 2892 (2004).
[19] D. Wang, J. G. Lu, C. J. Otten, W. E. Buhro, Appl. Phys. Lett. 83, 5280 (2003).
[20] C.C. Chen, C.C. Yeh, C.H Chen, M.Y.Yu, H. L. Liu, J. J. Wu, K. H. Chen, L. C. Chen, J.Y. Peng, Y. F. Chen, J .Am. Chem. Soc. 123, 2791 (2001).
[21] Y. C. Zhu, Y. Bando, D. F. Xue, D. Golberg, Adv. Mater. 16, 631 (2004).
[22] Q. Li, X. Gong, C. Wang, J. Wang, K. ip, S. Hark, Adv. Mater. 16, 1436 (2004).
[23] C. Ye, G. Meng, Y. Wang, Z. Jiang, L. Zhang, J. Phys. Chem. B 106, 10338 (2002).
[24] K. W. Chang , J. J. Wu, J. Phys. Chem. B, 106, 7796 (2002).
[25] R. Hupta, Q. Xiong, G. D. Mahan, P. C. Eklund, Nano. Lett. 3, 1745 (2003).
[26] E. P. A. M. Bakkers, M. A. Verheijen, J. Am. Chem. Soc. 125, 3440 (2003).
[27] M. S. Gudisksen, J. Wang, C. M. Lieber, J. Phys. Chem. B, 106, 4036 (2002).
[28] S. C. Lyu, Y. Zhnag, C. J. Lee, H. Ruh, H. J. Lee, Chem. Mater. 15, 3294 (2003).
[29] P. Gao, Z. L. Wang, J. Phys. Chem. B, 106, 12653 (2002).
[30] C. Tang, Y. Bando, T. Sato, J. Phys. Chem. B, 106, 7449 (2002).
[31] J. W. Hu, Q. Li, X. M. Meng, C.S. Lee, S. T. Lee, J. Phys. Chem. B 106, 9526 (2002).
[32] K. W. Chang, and J. J. Wu, J. Phys. Chem. B, 108 , 1838 (2004).
[33] R.Q. Zhang, T.S. Chu, H.F. Cheung, N. Wang, S.T. Lee. Mater. Sci. Eng. C. 16, 31 (2001)
[34] S.T. Lee, N. Wang, C. S. Lee, Mater. Sci. Eng. A. 286,16(2000)
[35] H. J. Fan, R. Scholz, F. M. Kolb, M. Zacharias, Appl. Phys. Lett. 85, 4142 (2004).
[36]Y. Chen, D.M. Bagnall, H. Koh, K. Park, K. Hiraga, Z. Zhu, T. Yao, J.Appl.Phys. 84, 3912 (1998)
[37]A.Ohyomo, M.Kawasaki, YSakurai, I.Ohkubo, R.Shiroki, Y.Yoshida, T.Yasuda, Y.Segawa, H.Koinuma, Mater.Sci. Eng. B. 56, 263 (1998)
[38] W. I. Park, G. C. Yi, M. Kim, S. J. Pennycook , Adv. Mater. 15. 526 (2003)
[39] 陳文華, 成功大學化工所碩士論文, 2002
[40] R. A. Powell, W. E. Spicer, and J. C. McMenamin, Phys. Rev. B, 6, 3056, (1972)
[41] D.M. Hofmann, A. Hofstaetter, F. Leiter, H. Zhou, F. Henecker, and B. K. Meyer, S. B. Orlinskii, J. Schmidt, P. G. Baranov, Phys. Rev. Lett. 88, 045504 (2002)
[42] E. G. Bylander, J. Appl. Phys. 49, 1188(1978)
[43] H. L. Hartnagel, A. K. Jagadish, "Semiconducting Transparent Thin
Films", published by Institute of Physics Publishing (1995).
[44] Z. L. Wang, Materials Today, 7, 26 (2004)
[45] Y . Zhang, N. Wang, S. Gao, R. He, S. Miao, J. Liu, J. Zhu ,
X. Zhang Chem. Mater. 14, 3564 (2002)
[46] B. D. Yao, Y. F. Chan , N. Wang , Appl. Phys. Lett. 81, 757 (2002)
[47] Y. C. Kong , D. P. Yu, B. Zhang, W. Fang ,S. Q. Feng ,
Appl. Phys. Lett. 78, 407(2001)
[48] T.Y. Kima, J.Y. Kimb, M. Senthil Kumara, E.-K. Suhb, K.S. Nahma, J. Cry. Growth. 270, 491 (2004)
[49] L.Dai, X.L. Chen,W.J.Wang, T. Zhou, B. Q. Hu, J. Phys.: Condens. Matter, 15, 2221 (2003)
[50] Y. Dai , Y. Zhang, Q. K. Li ,C. W. Nan, Chem. Phys. Lett. 358, 83 (2002)
[51] S. C. Lyu, Y. Zhang,C. J. Lee, H. Ruh ,H. J. Lee, Chem. Mater. 15, 3294 (2003)
[52] S. Y. Li, C. Y. Lee ,T. Y. Tseng, J. Cryst. Growth, 247, 357 (2003)
[53] Y. Ding , P. X. Gao .Z. L. Wang J. Am. Chem. Soc. 126, 2066(2004)
[54] Z. W. Pan, S. Dai, C. M. Rouleau,D. H. Lowndes, Angew. Chem. Int. Ed. 44, 274 (2005)
[55] W. I. Park, D. H. Kim,S. W. Jung , G. C. Yi Appl. Phys. Lett. 80, 4232 (2002)
[56] W. I. Park, G. C. Yi , M. Y. Kim, S. J. Pennycook ,Adv. Mater. 14, 1841 (2002)
[57] W. I. Park, G. C. Yi , M. Y. Kim, S. J. Pennycook, Adv. Mater. 15, 526 (2003)
[58] S. J. An, W. I. Park, G. C. Yi, Y. J. Kim, H. B. Kang,M. Kim ,Appl. Phys. Lett. 84, 3612 (2004)
[59] G. C. Yi, C.Wang , W. Park, Semicond. Sci. Technol. 20, 22 (2005)
[60] K. Ogata,K. Maejima ,S. Fujita , J. Cryst. Growth 248, 25 (2003)
[61] B. P. Zhang, N. T. Binh ,Y. Segawa, K. Wakatsuki ,N. Usami
Appl. Phys. Lett. 83, 1635 (2003)
[62] J. J. Wu, S. C. Liu Adv. Mater. 14, 215 (2002)
[63] B. Liu, and H. C. Zeng, J. Am. Chem. Soc. 125, 4430 (2002).
[64] L. Guo, Y. L. Ji, H. Xu, P. Simon, J. Am. Chem. Soc. 124, 13864 (2002)
[65] L. Vayssieres, Adv. Mater. 15, 464 (2003)
[66] Y. Li, G. W. Meng, L. D. Zhang, F. Phillipp, Appl. Phys. Lett. 76, 10 (2000)
[67]Z. W. Pan, Z. R. Dai, Z. L. Wang, Science, 291, 1947 (2001)
[68] X. Y. Kong , Z. L. Wang , Nano Lett. 3, 1625 (2003)
[69] X. Y. Kong , Z. L. Wang, Appl. Phys. Lett. 84, 975 (2004)
[70] P. Xi. Gao, Y. Ding, W. Mai, W. L. Hughes, C. Lao, Z. L. Wang, Science, 309, 1700 (2005)
[71] Z. L. Wang, J. Phys.: Condens. Matter 16 , R829 (2004)
[72] P. X. Gao, Z. L. Wang, J. Phys. Chem. B ,106 ,12653 (2002)
[73] Z. L. Wang, X. Y. Kong, J. M. Zuo, Phys. Rev. Lett. 91, 185502 (2003)
[74]Y.Dai, Y. Zhang, Q. K. Li, C.W. Nan, Chem. Phys. Lett. 358, 83
(2002)
[75] H. Yan, R. He, Johnny Pham, P. Yang, Adv. Mater. 15, 402 (2003)
[76] J.B. Baxter, E.S. Aydil , J. Cry. Growth , 274, 407 (2005)
[77] J. Jie, G. Wang, Y. Chen, X. Han, Q. Wang, B. Xu, J. G. Hou
Appl. Phys. Lett. 86, 31909 (2005)
[78] L. Wang , X. Zhang, S. Zhao, G. Zhou, Y. Zhou, J. Qi,
Appl. Phys. Lett. 86, 24108 (2005)
[79] C. L. Hsu, S. J. Chang, H. C. Hung, Y. R. Lin, C.J. Huang, Y. K. Tseng, I. C. Chen, IEEE TRANSACTIONS ON NANOTECHNO -LOGY, 4, 649 (2005)
[80] Jr H. He, J. H. Hsu, C. W. Wang, H. N. Lin, L. J. Chen, Z. L. Wang,
J. Phys. Chem. B, 110, 50 (2006)
[81] X. Wang, C. J. Summers, Z. L. Wang, Nano Lett. 4, 423, (2004)
[82] D. Banerjee, J. Rrybczynski, J.Y. Huang, D.Z.Wang, K. Kempa
Z.F. Rren, Appl. Phys. A 80, 749 (2005)
[83] H. J. Fan1, W. Lee1, R. Scholz1, A. Dadgar, A. Krost, K. Nielsch1, M. Zacharias1, Nanotechnology, 16 , 913 (2005)
[84] Hou T. Ng, J. Han, T. Yamada, P. Nguyen, Yi P. Chen, M. Meyyappan, Nano Lett. 4, 1247 (2004)
[85] S.Y. Li, C.Y. Lee, P. Lin, T. Y. Tsenga, J. Vac. Sci. Technol. B , 24, 147 (2006)
[86] R. Könenkamp, R.C. Word, C. Schlegel, Appl. Phys. Lett. 85, 6004 (2004)
[87] M. Law, L. E. Greene J. C. Johnson, R. Saykally, P. Yang,
Nature Materials , 4, 455 (2005)
[88] X. Duan, Y. Huang, Y. Cui, J. Wang ,C. M. Lieber, Nature 409, 66 (2001)
[89] P. A. Smith, C. D. Nordquist, T. N. Jackson, T. S. Mayer, B. R. Martin, J. Mbindyo , T. E. Mallouk, Appl. Phys. Lett. 77, 1399 (2000)
[90]M. R. Diehl, S. N. Yaliraki, R. A. Beckman, M. Barahona, J. R. Heath, Angew. Chem. Int. Ed. 41, 253 (2002)
[91]K. Yamamoto, S. Akita and Y. Nakayama, J. Phys. D: Appl. Phys. 31, L34 (1998)
[92]P. A. Smith, C. D. Nordquist, T. N. Jackson, T. S. Mayer, B. R. Martin, J. Mbindyo, Thomas E. Mallouk, Appl. Phys. Lett. 77, 1399 (2000)
[93]Y. Huang, X. Duan, Q. Wei , C. M. Lieber, Science 291, 630 (2001)
[94]A. Ulman: An introduction to ultrathin organic films: from Langmuir-Blodgett to self-assembly (Academic Press, New York, 1991)
[95]C. Zhou, J. Kong, H. Dai, Appl. Phys. Lett. 76, 1597 (2000)
[96]Y. Zhang, A. Chang, J. Cao, Q. Wang, W. Kim, Y. Li, N. Morris, E. Yenilmez, J. Kong, H. Dai, Appl. Phys. Lett. 79, 3155 (2001)
[97]A. Ural, Y. Li, and H. Dai, Appl. Phys. Lett. 81, 3463 (2002)
[98] M. Islam, S. Sharma, T. I. Kamins , R. S. Williams, Nanotechnology 15, L5 (2004)
[99] M. Islam, S. Sharma, T. I. Kamins , R. S. Williams, Appl. Phys. A , 80, 1133 (2005)
[100] R. He, D. Gao, R. Fan, A. Hochbaum, C. Carraro, R. Maboudian,
P. Yang ,Adv. Mater. 17, 2098 (2005)
[101] J. F. Conley, Jr., L. Stecker, Y. Ono, Appl. Phys. Lett. 87, 223114 (2005)
[102] L. E. Greene, M. Law, D. H. Tan, M. Montano, J. Goldberger,
G. Somorjai, P. Yang , Nano Lett. 5, 1231 (2005)
[103] C. S. Lao, J. Liu, P Gao, L Zhang, D. Davidovic, R. Tummala,
Z. L. Wang, Nano Lett. 6, 263 (2006)