簡易檢索 / 詳目顯示

研究生: 林呈修
Lin, Cheng-Xiou
論文名稱: 以共濺鍍製備氧化鋁鋯介電層及鈦摻雜氧化銦鎵鋅通道層之薄膜電晶體
Fabrication of Thin-Film Transistors based on ZrAlO Gate Dielectrics and Ti-IGZO Channels by Co-sputtering Processes
指導教授: 王水進
Wang, Shui-Jinn
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 81
中文關鍵詞: 氧化鋁鋯鈦摻雜共濺鍍氧化銦鎵鋅薄膜電晶體
外文關鍵詞: Ti-doped, IGZO, ZrAlO, Co-sputtering, Thin film transistor
相關次數: 點閱:124下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在利用共濺鍍沉積技術製備薄膜電晶體,同時改善介電層與通道層薄膜品質,達到提升元件特性之目的。
    本研究主要分為兩部分,第一部分為利用二氧化鋯與氧化鋁作為閘極介電層,使用不同堆疊結構與共濺鍍製程,藉由調變介電層內元素比例調整材料組成與特性,探討不同介面所造成元件之影響,並進一步分析其應用於氧化銦鎵鋅薄膜電晶體之電特性。第二部分則是利用二氧化鈦與氧化銦鎵鋅製備鈦摻雜氧化銦鎵鋅通道層,搭配第一部分所製造出最佳參數之閘極介電層,藉由調變不同功率沉積薄膜,改善元件之可靠度。為進一步提升元件電特性,本研究亦進行介電層與通道層經沉積後熱退火處理(PDA),探討PDA對材料特性及可靠度之影響。
    於第一部分研究中,首先探討堆疊結構介電層應用於氧化銦鎵鋅薄膜電晶體時,不同介面對元件電特性之影響。由實驗結果得知,氧化鋁與氧化銦鎵鋅除具有較佳的介面品質外,亦可藉由熱退火處理改善其遲滯效應。於結合二氧化鋯與氧化鋁之閘極介電層於氧化銦鎵鋅薄膜電晶體之研製上,實驗結果顯示,適當摻入鋁元素於二氧化鋯、且經500 oC退火後氧化鋁鋯介電層仍呈現非晶型態,於相同等效氧化層厚度下具較低漏電流,適合作為電晶體之閘極介電層。
    於結合氧化鋁鋯介電層與氧化銦鎵鋅薄膜電晶體部分,實驗結果顯示,摻入適量鋁元素之氧化鋁鋯有助於介電層與氧化銦鎵鋅間界面品質的改善,而過量之鋁元素反而造成界面缺陷增加,對元件特性與遲滯效應產生負面影響。其中以鋁所佔比例為15 %之氧化鋁鋯應用於IGZO-TFT時,可獲得最佳之電晶體特性,元件電流開關比為1.34×107、次臨界擺幅為111 mV/dec、載子遷移率為16.5 cm2/V∙s、介面缺陷密度為1.92×1012 cm-2eV-1與遲滯效應之臨界電壓偏移為0.28 V。此一實驗結果已初步符合本論文於降低關閉電流、提升開關比、改善次臨限擺幅與降低界面缺陷之標的。
    於論文第二部分,為改善通道層之缺陷密度,將鈦摻入氧化銦鎵鋅薄膜,以抑制氧空缺的產生。基於鈦原子為易氧化之材料,可捕捉通道層薄膜內之氧分子以降低氧空缺,進而提升元件特性,且具鈦摻雜之氧化銦鎵鋅薄膜,經由高溫退火製程後,不易造成氧原子脫離而形成缺陷,較氧化銦鎵鋅適合高溫退火處理,進一步改善元件電特性及可靠度。
    於鈦摻雜氧化銦鎵鋅薄膜電晶體研製實驗結果顯示,摻入適量鈦元素於氧化銦鎵鋅通道可改善薄膜品質,減少薄膜內缺陷密度,其中以Ti(3.5 %)-IGZO TFT且經過400 oC氮氣退火製程下,可獲得最佳電特性及可靠度:元件電流開關比為5.87×107、次臨界擺幅為95 mV/dec、載子遷移率為21.3 cm2/V∙s、介面缺陷密度為1.32×1012 cm-2eV-1以及正負偏壓應力之臨界電壓偏移分別為215 mV和-125 mV。
    本論文成功利用共濺鍍法,使用二氧化鋯與氧化鋁的共濺鍍閘極絕緣層製備之薄膜電晶體,並加入鈦摻雜氧化銦鎵鋅之通道層,有效改善漏電流及元件可靠度,提升整體元件特性,有助於未來顯示技術之電子產品特性提升與應用。

    SUMMARY
    A co-sputtering deposited zirconium aluminum oxide (ZrAlO) gate dielectrics with a dielectric constant ranging from about 26.7 to 15.5 is used for Ti-IGZO thin-film transistors (TFTs). Improved gate controllability and reliability of 50-nm-thick ZrAlO gate dielectrics prepared by a power ratio of ZrO2:Al2O3=100 W:40 W are demonstrated. Using the proposed ZrAlO gate dielectric, it reveals that TFTs with 25-nm-thick Ti-IGZO channel layer exhibit enhanced device performances with subthreshold swing of 95 mV/dec, field effect mobility of 21.3 cm2/V∙s, on/off current ratio of 5.87×107 and positive/negative gate-bias stress of 215 mV/-125 mV, respectively. These performance improvements are attributed to Al incorporation enlarges the energy bandgap of the dielectric and keeps the dielectric layer in amorphous state, and to a considerable reduction in channel defect density after Ti incorporation in IGZO channel.

    中文摘要 I 英文摘要 IV 誌謝 XI 目錄 XII 表目錄 XV 圖目錄 XVI 第一章 緒論 1 1-1 平面顯示器發展概況 1 1-2 薄膜電晶體發展概況 3 1-3 薄膜電晶體高介電係數材料技術現況與選擇考量 6 1-4 研究動機 8 第二章 理論基礎 11 2-1 薄膜電晶體操作原理 11 2-2 薄膜電晶體基本參數 13 2-3 MOS結構氧化層之缺陷與效應 18 2-4 MOS結構通道層之缺陷與效應 20 2-5 低頻雜訊量測原理 22 第三章 製程與量測設備及元件製作流程 25 3-1 射頻磁控濺鍍機 25 3-1-1 電漿與濺鍍 25 3-1-2 射頻磁控共濺鍍沉積技術 26 3-2 量測設備介紹與元件參數萃取 27 3-3 元件可靠度量測 28 3-4 氧化銦鎵鋅薄膜電晶體製作流程 29 第四章 共濺鍍介電層與通道層薄膜材料特性 34 4-1 氧化鋁鋯介電層材料分析 34 4-1-1 XPS薄膜分析 34 4-1-2 XRD薄膜分析 35 4-1-3 SIMS分析 36 4-2 氧化鋁鋯介電層電特性 37 4-2-1 C-V電容特性量測 38 4-2-2 J-V漏電特性分析 38 4-3 鈦摻雜氧化銦鎵鋅通道層材料分析 40 4-3-1 XPS薄膜分析 40 4-3-2 XRD薄膜分析 43 第五章 元件實驗量測特性分析與討論 45 5-1 ZrO2與Al2O3之堆疊式閘極介電層結構之IGZO-TFT 45 5-1-1 未退火之堆疊式閘極介電層IGZO-TFT之元件特性 46 5-1-2 熱退火之堆疊式閘極介電層IGZO-TFT之元件特性 48 5-2 共濺鍍沉積ZrAlO閘極介電層之IGZO-TFT 52 5-2-1 未退火之ZrAlO閘極介電層IGZO-TFT之元件特性 52 5-2-2 熱退火之ZrAlO閘極介電層IGZO-TFT之元件特性 55 5-3 Ti-doped IGZO-TFT元件特性與可靠度分析 62 5-3-1 未退火之Ti-doped IGZO-TFT之元件特性與可靠度分 析 62 5-3-2 熱退火之Ti-doped IGZO-TFT之元件特性與可靠度分 析 67 第六章 結論與未來研究建議 72 6-1 結論 72 6-2 未來研究之建議 74 參考文獻 76

    [1] 張文元,2012,液晶玻璃密集式包裝箱厚度與落摔強度關係之研究,碩士論文,國立交通大學工學院精密與自動化工程學程。
    [2] 程章林,2010,顯示器之過去、現在與未來講義,工研院影像顥示科技中心。
    [3] 光電科技工業協進會(Photonics Technology & Industry Devlopment Association, PIDA), http://www.pida.org.tw/.
    [4] 洪珮華,2015,前瞻銦鎵鋅氧薄膜電晶體之閘極電應力不穩定性與高濺鍍速率矽鋁基底保護層研究,碩士論文,國立中山大學光電工程學系。
    [5] T. P. Brody, J. A. Asars, and G. D. Dixon, “A 6 × 6 inch 20 lines-per-inch liquid-crystal display panel,” IEEE Transactions on Electron Devices, vol. 20, no. 11, pp. 995-1001, 1973.
    [6] Y. Kuo, “Thin Film Transistor Technology—Past, Present, and Future,” The Electrochemical Society, vol. 22, no. 1, pp. 55-61, 2013.
    [7] E. M. C. Fortunato, P. M. C. Barquinha, Ana C. M. B. G. Pimentel, A. M. F. Gonçalves, A. J. S. Marques, R. F. P. Martins, and L. M.N. Pereira, “Wide-bandgap high-mobility ZnO thin-film transistors produced at room temperature,” Applied Physics Letters, vol. 85, no. 13, pp. 2541-2543, 2004.
    [8] T. Hirao, M. Furuta, H. Furuta, T. Matsuda, T. Hiramatsu, H. Hokari, and M. Yoshida, “4.1: Distinguished Paper: High Mobility Top‐Gate Zinc Oxide Thin‐Film Transistors (ZnO‐TFTs) for Active‐Matrix Liquid Crystal Displays,” SID Symposium Digest of Technical Papers, vol. 37, no. 1, p. 18, 2006.
    [9] S. Masuda, K. Kitamura, Y. Okumura, and S. Miyatake, “Transparent thin film transistors using ZnO as an active channel layer and their electrical properties,” Journal of Applied Physics, vol. 93, no. 3, pp. 1624-1630, 2003.
    [10] M. Kimura1, T. Kamiya, T. Nakanishi, K. Nomura, and H. Hosono, “Intrinsic carrier mobility in amorphous In–Ga–Zn–O thin-film transistors determined by combined field-effect technique,” Applied Physics Letters, vol. 96, no. 26, p. 262105, 2010.
    [11] K. Takechi, M. Nakata, T. Eguchi, H. Yamaguchi1, and S. Kaneko, “Temperature-Dependent Transfer Characteristics of Amorphous InGaZnO4 Thin-Film Transistors,” Japanese Journal of Applied Physics, vol. 48, no. 1R, p. 011301, 2009.
    [12] J.H. Chung, J.Y. Lee, H.S. Kim, N.W. Jang, and J.H. Kic, “Effect of thickness of ZnO active layer on ZnO-TFT's characteristics,” Thin Solid Films, vol. 516, no. 16, pp. 5597-5601, 2008.
    [13] J.-S. Na, and O.-K. Kwon, “Pixel structures to compensate nonuniform threshold voltage and mobility of polycrystalline silicon thin-film transistors using subthreshold current for large-size active matrix organic light-emitting diode displays,” Japanese Journal of Applied Physics, vol. 53, no. 3S1, p. 03CD02, 2014.
    [14] H. Y. Chong, K. W. Han, Y. S. No, and T. W. Kim, “Effect of the Ti molar ratio on the electrical characteristics of titanium-indium-zinc-oxide thin-film transistors fabricated by using a solution process,” Applied Physics Letters, vol. 99, no. 16, p. 161908, 2014.
    [15] C.-H. Kao, H. Chen, and C.-Y. Chen, “Material and electrical characterizations of high-k Ta2O5 dielectric material deposited on polycrystalline silicon and single crystalline substrate,” Microelectronic Engineering, vol. 138, pp. 36-41, 2015.
    [16] R. Z. Wang, S. L Wu, X. Y. Li, and J. T. Zhang, “The electrical performance and gate bias stability of an amorphous InGaZnO thin-film transistor with HfO2 high-k dielectrics,” Solid-State Electronicsvol, vol. 133, pp. 6-9, 2017.
    [17] J. Li, C.-X. Huang, C.-Y. Zhao, X. Ding, J.-H. Zhang, X.-Y. Jiang, and Z.-L. Zhang, “High Performance ZnSnO Thin Film Transistor with ZrO2 Gate Insulator Formed by Atomic Layer Deposition,” Journal of Nanoelectronics and Optoelectronics, vol. 13, no. 2, pp. 214-220, 2018.
    [18] P. Gogoi, R. Saikia, D. Saikia, R. P. Dutta, and S. Changmai, “ZnO TFTs prepared by chemical bath deposition technique with high‐k La2O3 gate dielectric annealed in ambient atmosphere,” Phys. Status Solidi A, vol. 212, no. 16, pp. 826-830, 2015.
    [19] B. Cheng, M. C. Cao, R. Rao, A. Inani, P. V. Voorde, W. M. Greene, J. M. Stork, M. Zeitzoff, and J. C. Woo, “The impact of high-κ gate dielectrics and metal gate electrodes on sub-100 nm MOSFETs,” IEEE Trans. Electron Devices, vol. 46, no. 7, pp. 1537-1544, 1999.
    [20] S. Mohsenifar, and M. H. Shahrokhabadi, “Gate Stack High-κ Materials for Si-Based MOSFETs Past, Present, and Futures,” Microelectronics and Solid State Electronics, vol. 4, no. 1, pp. 12-24, 2015.
    [21] H.-H. Tseng, “The Progress and Challenges of Applying High-k/Metal-Gated Devices to Advanced CMOS Technologies,” Solid State Circuits Technologies, 2010.
    [22] P. Taechakumput, S. Taylor, O. Buiu, R. Potter, and P. Chalker, “Optical and electrical characterization of hafnium oxide deposited by liquid injection atomic layer deposition,” Microelectronics Reliability, vol. 47, no. 4-5, pp. 825-829, 2007.
    [23] P. Ma, L. Du, Y. Wang, R. Jiang, Q. Xin, Y. Li, and A. Song, “Low voltage operation of IGZO thin film transistors enabled by ultrathin Al2O3 gate dielectric,” Applied Physics Letters, vol. 112, no. 2, p. 023501, 2018.
    [24] D. Fischer, and A. Kersch, “The effect of dopants on the dielectric constant of HfO2 and ZrO2 from first principles,” Applied Physics Letters, vol. 92, no. 1, p. 12908, 2008.
    [25] H. C. Chiu. H. C. Wang, C. K. Lin, C. W. Chiu, J. S. Fu, K. P. Hsueh, and F. T. Chien, “Low Frequency Noise Analysis of Top-Gate MgZnO Thin-Film Transistor with High-k ZrO2 Gate Insulator,” Electrochemical and Solid-State Letters, vol. 14, no. 9, pp. H385-H388, 2011.
    [26] L. Lan, and J. Peng, “High-Performance Indium–Gallium–Zinc Oxide Thin-Film Transistors Based on Anodic Aluminum Oxide,” IEEE Trans. Electron Devices, vol. 58, no. 5, pp. 1452-1455, 2011.
    [27] Y.-H. Chang, M.-J. Yu, R.-P. Lin, C.-P. Hsu, and T.-H. Hou, “Abnormal positive bias stress instability of In–Ga–Zn–O thin-film transistors with lowtemperature Al2O3 gate dielectric,” Applied Physics Letters, vol. 108, no. 3, p. 033502, 2016.
    [28] Ho Yong Chong, and Kyu Wan Han, “Effect of the Ti molar ratio on the electrical characteristics of titanium-indium-zincoxide thin-film transistors fabricated by using a solution process,” Applied physics letters, vol. 99, Artical ID 161908, 2011.
    [29] S. C. Sun, and J. D. Plummer, “Electron Mobility in Inversion and Accumulation Layers on Thermally Oxidized Silicon Surfaces,” IEEE Journal of Solid-State Circuits, vol. 15, no. 4, pp. 562-573, 1980.
    [30] M. Tsuno, M. Suga, M. Tanaka, K. Shibahara, M. Miura-Mattausch, and M. Hirose, “Physically-Based Threshold Voltage Determination for MOSFET’s of All Gate Lengths,” IEEE transactions on electron devices, vol. 46, no. 7, pp. 1429-1434, 1999.
    [31] H.S. Wong, M.H. White, T.J. Krutsick, and R.V. Booth, “Modeling of Transconductance Degradation and Extraction of Threshold Voltage in Thin Oxide MOSFET’s,” Solid-State Electronics, vol. 30, no. 9, pp. 953-968, 1987.
    [32] D. K. Schroder, Semiconductor material and device characterization, 2nd edition, Wiley, New York, pp. 367-369, 1998.
    [33] S. J. Yun, J. B. Koo, J. W. Lim, and S. H. Kim, “Pentacene-Thin Film Transistors with ZrO2 Gate Dielectric Layers Deposited by Plasma-Enhanced Atomic Layer Deposition,” Electrochemical and Solid-state Letters, vol. 10, no. 3, pp. H90-H93, 2007.
    [34] 許哲瑋,2012,氧化鉿∕砷化銦金氧半結構之製備及其介面與電性研究,碩士論文,國立中央大學電機工程學系。
    [35] S. M. Sze, and M. K. Lee, “Semiconductor Devices Physics and Technology,” 3rd edition, Hoboken, N.J., Wiley, pp. 238-239, 2012.
    [36] Y. C. Cheng, “Electronic states at the silicon-silicon dioxide interface,” Progress in Surface Science, vol.8, p. 181, 1977.
    [37] 崔占全,晶體缺陷與固態相變,機械工業出版社,2014。
    [38] 材料科學導論。http://ptr.chaoxing.com/nodedetailcontroller/visitnodedetail?knowledgeId=3511468.
    [39] 顏文紹,2014,電子元件之低頻特性:二碲化鉬電晶體及磁穿隧接面磁場感應器,碩士論文,國立中興大學物理研究所。
    [40] T. C. Fung, G. Baek, and J. Kanicki, “Low frequency noise in long channel amorphous In-Ga-Zn-O thin film transistors,” Journal of Applied Physics, vol. 108, no.7, Artical ID 074518, 2010.
    [41] L. X. Qian, X. Z. Liu, C. Y. Han, and P. T. Lai, “Improved Performance of Amorphous InGaZnO Thin-Film Transistor With Ta2O5 Gate Dielectric by Using La Incorporation”, IEEE Transactions on Device and Materials Reliability, vol. 14, no. 4, pp. 1056-1060, 2014.
    [42] T. C. Fung, G. Baek, and J. Kanicki, “Low frequency noise in long channel amorphous In-Ga-Zn-O thin film transistors,” Journal of Applied Physics, vol. 108, no.7, p. 074518, 2010.
    [43] R. N. Chauhan, N. Tiwari, H.-P. D. Shieh, and P.-T. Liu, “Electrical performance and stability of tungsten indium zinc oxide thin-film transistors,” Materials Letters, vol. 214, pp. 293-296, 2018.
    [44] J. Raja, K. Jang, N. Balaji, W. choi, T. T. Trinh, and J. Yi, “Negative gate-bias temperature stability of N-doped InGaZnO active-layer thin-film transistors,” Applied Physics Letters, vol. 102,no. 8, p. 083505, 2018.
    [45] C. Kulchaisit, Y. Ishikawa, M. N. Fujii, H. Yamazaki, J. P. S. Bermundo, S. Ishikawa, T. Miyasako, H. Katsui, K. Tanaka, K.-i. Hamada, M. Horita, and Y. Uraoka, “Reliability Improvement of Amorphous InGaZnO Thin-Film Transistors by Less Hydroxyl-Groups Siloxane Passivation,” Journal of Display Technology, vol. 12, no. 3, pp. 263-267, 2016.
    [46] T.-M. Pan, C.-H. Chen, J.-H. Liu, J.-L. Her, and K. Koyama, “Electrical and Reliability Characteristics of High-κ HoTiO3 α-InGaZnO Thin-Film Transistors,” IEEE Electron Device Letters, vol. 35, no. 1, pp. 66-68, 2014.

    下載圖示 校內:2020-06-06公開
    校外:2020-06-06公開
    QR CODE