| 研究生: |
林峻毅 Lin, Chun-I |
|---|---|
| 論文名稱: |
線聚焦換能器與散焦量測法應用於量測圓柱曲面之導波與聲彈塑性效應 Line-Focused PVDF Transducer and Defocusing Method for Measuring Cylindrically Guided Waves and Acousto-Elastic/Plastic Effects |
| 指導教授: |
李永春
Lee, Yung-Chung |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 101 |
| 中文關鍵詞: | 無鏡頭式線聚焦PVDF換能器 、圓柱表面波 、圓柱蘭姆波 、交叉相關法 、V(f,z)散焦量測系統 、聲彈性 、聲塑性 |
| 外文關鍵詞: | Lens-less line-focused PVDF transducers, cylindrically guided waves, Cross correlation method, V(f,z) defocusing measurement system, Acoustoelastic effects, Acoustoplastic effects |
| 相關次數: | 點閱:219 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文利用無鏡頭式線聚焦PVDF換能器和散焦量測系統,量測圓柱曲面導波,包含沿著圓柱體或鍍層圓柱體圓周方向傳遞的圓柱表面波 (Rayleigh-like cylindrical surface waves),與在薄壁圓管圓周方向傳遞的圓柱蘭姆波 (Cylindrical Lamb waves) 的頻散曲線。不同於一般平面體的散焦量測,在量測圓柱曲面的表面波與蘭姆波時,散焦造成的干涉相位與位置之間的改變是非線性的;因此,為了能夠利用V(f,z)散焦量測系統與波形分析法求得在不同頻率下的表面波波速,本論文引入一種新的交叉相關法 (Cross-Correlation method),分析V(z)震盪曲線的干涉相位變化,以萃取得到在:(1)圓柱體表面或 (2)鍍層圓柱體表面傳播的圓柱表面波波速與 (3)薄壁管圓上傳遞的蘭姆波波速。針對這三種不同特性的試片,本論文以實驗量測得到圓柱體表面波與圓管蘭姆波的頻散曲線,並與理論計算的結果相比較,得到非常吻合與接近的結果。
此外,利用無鏡頭式線聚焦PVDF換能器和V(f,z)散焦量測系統,本論文研究彈性體中的聲彈性和聲塑性現象與行為。首先,利用單軸拉伸系統使待測物體產生不同程度的彈性變形,再量測沿著單軸拉伸方向與不同角度方向下的表面波波速與其變化,最後決定待測物的聲彈性係數。另外,同樣以單軸拉伸的方式在待測試片中產生永久形變,利用量測系統量測表面波的波速變化,根據波速變化評估與探討材料的聲塑性行為。此一方面的研究證明:無鏡頭式線聚焦PVDF換能器和V(f,z)散焦量測系統提供了一種非破壞性的檢測方式,檢測物體是否受力或有殘餘應力的產生。
Lens-less line-focused PVDF transducers and defocusing measurement method are applied to determine the dispersion curves of cylindrically guided waves, including Rayleigh-like cylindrical surface waves propagating along the circumferential direction of solid cylinders and layer-coated cylinders, as well as cylindrical Lamb waves on circular annuli. Conventional V(f,z) waveform processing method has been modified to cope with the non-linear relationship between the phase angle of wave interference and the defocusing distance. A cross correlation method is proposed to accurately extract the cylindrically guided wave velocity from measured data. Experiments have been carried out on: (1) stainless steel and glass cylinders, (2) Ni-coated stainless steel cylinders, and (3) cylindrically curved stainless steel sheets. The experimentally obtained dispersion curves are in very good agreement with their theoretical counterparts. Variation of cylindrically guided wave velocity due to the cylindrical curvature is quantitatively verified using this method.
Line-focused PVDF transducers and its V(f,z) defocusing measurement system are also applied to determine the acoustoelastic and acoustoplastic effects of deformed polymethylmeth-acrylate (PMMA) samples, as well as silicon steel samples with permanent deformation. Different levels of strain or permanent deformation are formed in PMMA and silicon steel samples. Large plastic deformation ranging from 5% to 30% is created in the silicon steel samples using uni-axial tensile loading. The velocity changes of surface acoustic waves under different strain or plastic deformation are measured along various directions relative to the loading direction. The acoustoelastic coefficients of PMMA are successfully determined from measurement results. The acoustoplastic effects of PMMA and silicon steel samples are also measured and determined. The investigation on the acoustoelastic and acoustoplastic effects demonstrates an effective way for estimating applied and/or residual stresses in solid materials nondestructively using the line-focused PVDF transducer and its measurement method.
[1] L. Rayleigh, “On waves propagated along the plane surface of an elastic solid,” Proc. London Math. Soc., vol. 17, pp. 4-11, 1885.
[2] D. Royer, E. Dieulesaint, X. Jia, and Y. Shi, “Optical generation and detection of surface acoustic waves on sphere,” Appl. Phys. Lett., vol. 52, pp. 706-708, 1988.
[3] K. Yamanaka, H. Cho, and Y. Tsukahara, “Precise velocity measurement of surface acoustic waves on a bearing ball,” Appl. Phys. Lett., vol. 76, pp. 2797-2799, 2000.
[4] S. Ishikawa, H. Cho, K. Yamanaka, N. Nakaso, and Y. Tsukahara, “Surface acoustic waves on a sphere – analysis of propagation using laser ultrasonics,” Jpn. J. Appl. Phys., vol. 40, pp. 3623-3627, 2001.
[5] S. Ishikawa, N. Nakaso, N. Takeda, T. Mihara, Y. Tsukahara, and K. Yamanaka, “Surface acoustic waves on a sphere with divergent, focusing, and collimating beam shapes excited by an interdigital transducer,” Appl. Phys. Lett., vol. 83, pp. 4649-4651, 2003.
[6] D. Clorennec, D. Royer, and H. Walaszek, “Nondestructive evaluation of cylindrical parts using laser ultrasonics,” Ultrasonics, vol. 40, pp. 783-789, 2002.
[7] D. Clorennec, D. Royer, and S. Catheline, “SAW propagation on cylindrical parts using laser-ultrasonics: application to crack detection,” IEEE Ultrasonics Symp., pp. 207-210, 2002.
[8] A. N. Guz, “On the foundations of the ultrasonic non-destructive determination of stresses in near-the-surface layers of materials: Review,” Journal of Physical Science and Application, vol. 1, pp. 1-14, 2011.
[9] M. Duquennoy, M. Ouaftouh, M. L. Qian, F. Jenot, and M. Ourak, “Ultrasonic characterization of residual stresses in steel rods using a laser line source and piezoelectric transducers,” NDT&E Int., vol. 34, pp. 355-362, 2001.
[10] U. Kawald, C. Desmet, W. Lauriks, C. Glorieux, and J. Thoen, “Investigation of the dispersion relations of surface acoustic waves propagating on a layered cylinder,” J. Acoust. Soc. Am., vol. 99, pp. 926-930, 1996.
[11] Y. Pan, C. Rossignol, and B. Audoin, “Acoustic waves generated by a laser line pulse in cylinders; Application to the elastic constants measurement,” J. Acoust. Soc. Am., vol. 115, pp. 1537-1545, 2004.
[12] M. Kley, C. Valle, L. J. Jacobs, J. Qu, and J. Jarzynski, “Development of dispersion curves for two-layered cylinders using laser ultrasonics,” J. Acoust. Soc. Am., vol. 106, pp. 582-588, 1999.
[13] Y. D. Pan, X. H. Song, Z. Zhong, and B. Audoin, “Ultrasound generated by laser in a coated cylinder,” J. Phys.: Conf. Ser., vol. 278, 012031, 2011.
[14] G. Liu and J. Qu, “Guided circumferential waves in a circular annulus,” J. Appl. Mech., vol. 65, pp. 424-430, 1998.
[15] W. Gao, C. Glorieux, and J. Thoen, “Study of circumferential waves and their interaction with defects on cylindrical shells using line-source laser ultrasonics,” J. Appl. Phys., vol. 91, pp. 6114-6118, 2002.
[16] Y. Zhao, Z. Shen, J. Lu, X. Ni, and Y. Cui, “A numerical study of the interaction of laser-generated circumferential wave with defect on hollow cylinder,” Opt. Laser Technol., vol. 44, pp. 407-411, 2012.
[17] G. Liu and J. Qu, “Transient wave propagation in a circular annulus subjected to transient excitation on its outer surface,” J. Acoust. Soc. Am., vol. 104, pp. 1210-1220, 1998.
[18] C. Valle, M. Niethammer, J. Qu, and L. J. Jacobs, “Crack characterization using guided circumferential waves,” J. Acoust. Soc. Am., vol. 110, pp. 1282-1290, 2001.
[19] C. H. Yeh and C. H. Yang, “Characterization of mechanical and geometrical properties of a tube with axial and circumferential guided waves,” Ultrasonics, vol. 51, pp. 472-479, 2011.
[20] M. Cès, D. Royer, and C. Prada, “Characterization of mechanical properties of a hollow cylinder with zero group velocity lamb modes,” J. Acoust. Soc. Am., vol. 132, pp. 180-185, 2012.
[21] H. Nishino, T. Asano, Y. Taniguchi, K. Yoshida, H. Ogawa, M. Takahashi, and Y. Ogura, “Precise measurement of pipe wall thickness in noncontact manner using a circumferential lamb wave generated and detected by a pair of air-coupled transdcuers,” Jpn. J. Appl. Phys., vol. 50, 07HC10 1-7, 2011.
[22] K. Sezawa, “Dispersion of elastic waves propagated on the surface of stratified bodies and on curved surface,” Bull. Earthquake Res. Inst. Univ. Tokyo, vol. 3, pp. 1-18, 1927.
[23] I. A. Viktorov, Rayleigh and Lamb Waves: Physical Theory and Applications, New York, America, Plenum Press , 1967.
[24] A. N. Oraevsky, “Whispering-gallery waves,” Quantum Electron., vol. 32, pp. 377-400, 2002.
[25] J. Kushibiki and N. Chubachi, “Material characterization by line-focus beam acoustic microscopy,” IEEE Trans. Sonics Ultrason., vol. 32, pp. 189-212, 1985.
[26] J. Kushibiki, T. Ishikawa, and N. Chubachi, “Cut-off characterization of leaky Sezawa and pseudo-Sezawa wave modes for thin-film characterization,” Appl. Phys. Lett., vol. 57, pp. 1967-1969, 1990.
[27] J. O. Kim, J. D. Achenbach, P. B. Mirkarimi, M. Shinn, and S. A. Barnett, “Elastic constants of single-crystal transition-metal nitride films measured by line-focus acoustic microscopy,” J. Appl. Phys., vol. 72, pp. 1805-1811, 1992.
[28] J. O. Kim and J. D. Achenbach, “Effective elastic constants and acoustic properties of single-crystal TiN/NbN superlattices,” J. Mater. Res., vol. 7, pp. 2248-2256, 1992.
[29] Y. C. Lee, “Line-focus acoustic microscopy for material evaluation,” Ph.D. Dissertation of the Technological Institute, Northwestern University, USA, 1994.
[30] Y. C. Lee, J. O. Kim, and J. D. Achenbach, “Line-focus acoustic microscopy measurements of Nb2O5/MgO and BaTiO3/LaAlO3 thin-film substrate configurations,” IEEE Trans. Ultrason. Ferroelect. Freq. Contr., vol. 42, pp. 376-380, 1995.
[31] W. Li and J. D. Achenbach, “Measuring thin-film elastic constants by line-focus acoustic microscopy,” Proc. IEEE Ultrason. Symp., vol. 2, pp. 883-892, 1995.
[32] J. Y. Kim and S. I. Rokhlin, “Determination of elastic constants of generally anisotropic inclined lamellar structure using line-focus acoustic microscopy,” J. Acoust. Soc. Am., vol. 126, pp. 2998-3007, 2009.
[33] S. R. Meeks, D. Peter, D. Horne, K. Young, and V. Novotny, “Microscopic imaging of residual stress using a scanning phase-measuring acoustic microscope,” Appl. Phys. Lett., vol. 55, pp. 1835-1837, 1989.
[34] Y. C. Lee, J. O. Kim, and J. D. Achenbach, “Measurement of stresses by line-focus acoustic microscopy,” Ultrasonics, vol. 32, pp. 359-365, 1994.
[35] M. Okade and K. Kawashima, “Local stress measurement on polycrystalline aluminum by an acoustic microscope,” Ultrasonics, vol. 36, pp. 933-939, 1998.
[36] S. Sathish, R. W. Martin, and T. J. Moran, “Local surface skimming longitudinal wave velocity and residual stress mapping,” J. Acoust. Soc. Am., vol. 115, pp. 165-171, 2004.
[37] Y. C. Lee, J. D. Achenbach, and J. O. Kim, “Acoustic Microscopy Measurements to Correlate Surface Wave Velocity and Surface Roughness,” In:Review of Progress in Quantitative Nondestructive Evaluation, Springer US, pp 1791-1797, 1993.
[38] P. D. Warren, C. Pecorari, O. V. Kolosov, S. G. Roberts, and G. A. D. Briggs, “Characterization of surface damage via surface acoustic waves,” Nanotechnology, vol. 7, pp. 295-301, 1996.
[39] I. Pape, C. W. Lawrence, P. D. Warren, S. G. Roberts, G. A. D. Briggs, O. V. Kolosov, A. W. Hey, C. F. Paines, and B. K. Tanner, “Evaluation of polishing damage in alumina,” Philos. Mag. A, vol. 80, pp. 1913-1934, 2000.
[40] D. Xiang, N. N. Hsu, and G. V. Blessing, “The design, construction and application of a large aperture lens-less line-focus PVDF transducer,” Ultrasonics, vol. 34, pp. 641-647, 1996.
[41] D. Xiang, N. N. Hsu, and G. V. Blessing, “Material characterization by a time-resolved and polarization-sensitive ultrasonic technique,” Review of the Progress in Quantitative Non-destructive Evaluation, vol. 15, pp. 1431-1438, 1996.
[42] N. N. Hsu, D. Xiang, S. E. Fick, and G. V. Blessing, “Time and polarization resolved ultrasonic measurements using a lensless line-focus transducer,” Proc. IEEE Ultrason. Symp., pp. 867-871, 1995.
[43] D. Xiang, N. N. Hsu, and G. V. Blessing, “Ultrasonic leaky wave measurements for materials evaluation,” Nondestructive characterization of materials Ⅷ, edited by R. E. Green, New York, American: Plenum Press, pp. 775-780, 1997.
[44] D. Xiang, N. N. Hsu, and G. V. Blessing, “Time domain waveforms of a line-focus transducer probing anisotropic solids,” Nondestructive characterization of materials Ⅷ, edited by R. E. Green, New York, America: Plenum Press, pp. 799-804, 1997.
[45] C. H. Yang, “Characterization of piezoelectrics using line-focus transducer,” in Proceedings of 15th Conference of Chinese Society of Mechanical Engineering, pp. 780-790, 1998.
[46] Y. C. Lee, “Measurements of dispersion curves of leaky lamb waves using lens-less line-focus transducer,” Ultrasonics, vol. 39, pp. 297-306, 2001.
[47] Y. C. Lee and S. W. Cheng, “Measuring lamb wave dispersion curves of a bi-layered plate and its application on material characterization of coating,” IEEE Trans. Ultraon. Ferroelec. Freq. Contr., vol. 48, pp. 830-837, 2001.
[48] Y. C. Lee, “Measurements of multimode leaky lamb waves propagating in metal sheets,” Jpn. J. Appl. Phys., vol. 40, pp. 359-363, 2001.
[49] Y. C. Lee and S. P. Ko, “Measuring dispersion curves of acoustic waves using PVDF line-focus transducers,” NDT&E Int., vol. 34, pp. 191-197, 2001.
[50] Y. C. Lee , Y. F. Tein, and Y. Y. Chao, “A point-focus transducer for lamb wave measurements,” The Chinese Journal of Mechanics-series A, vol. 18, pp. 29-33, 2002.
[51] Y. C. Lee and C. C. Chu, “A double-layered line-focusing PVDF transducer and V(z) measurement of surface acoustic wave,” Jpn. J. Appl. Phys., vol. 44, pp. 1462-1467, 2005.
[52] C. H. Chung and Y. C. Lee, “Nondestructive determination of elastic constants of thin isotropic plates based on poly(vinylidene fluoride-trifluoroethylene) copolymer ultrasound focusing transducers and lamb wave measurements,” Jpn. J. Appl. Phys., vol. 48, pp. 046506 1-7, 2009.
[53] C. H. Chung and Y. C. Lee, “Broadband poly(vinylidene fluoride-trifluoroethylene) ultrasound focusing transducers for determining elastic constants of coating materials,” J. Nondestruct. Eval., vol. 28, pp. 101-110, 2009.
[54] C. H. Chung and Y. C. Lee, “Fabrication of poly(vinylidene fluoride-trifluoroethylene) ultrasound focusing transducers and measurements of elastic constants of thin plates,” NDT&E Int., vol. 34, pp. 96-105, 2010.
[55] D. I. Crecraft, “Ultrasonic wave velocities in stressed Nickel steel,” Nature, vol. 195, pp. 1193-1194, 1962.
[56] D. I. Crecraft, “The measurement of applied and residual stresses in metals using ultrasonic waves,” J. Sound Vib., vol. 5, pp. 173-192, 1967.
[57] R. T. Smith, R. Stern, and R. W. B. Stephens, “Third-order elastic moduli of polycrystalline metals from ultrasonic velocity measurement,” J. Acoust. Soc. Am., vol. 40, pp. 1002-1008, 1966.
[58] D. M. Egle and D. E. Bray, “Measurement of acoustoelastic and third-elastic constants for rail steel,” J. Acoust. Soc. Am., vol. 60, pp. 741-744, 1976.
[59] R. B. King and C. M. Fortunko, “Determination of inplane residual stress states in plates using horizontally polarized shear waves,” J. Appl. Phys., vol. 54, pp. 3027-3035, 1983.
[60] M. Hirao, H. Oqi, and H. Fukuoka, “Advanced ultrasonic method for measuring rail axial stresses with electromagnetic acoustic transducer,” Res. NDE, vol. 5, pp. 211-223, 1994.
[61] A. V. Clark, C. S. Hehaman, and T. N. Nquyen, “Ultrasonic measurement of stress using a rotating EMAT,” Res. NDE, vol. 12, pp. 217-239, 2000.
[62] M. Hirao, H. Oqi, and H. Yasui, “Contactless measurement of bolt axial stress using a shear-wave electromagnetic acoustic transducer,” NDT&E Int., vol. 34, pp. 179-183, 2001.
[63] M. Duquennoy, M. Ouaftouh, M. L. Qian, F. Jenot, and M. Ourak, “Ultrasonic characterization of residual stresses in steel rods using a laser line source and piezoelectric transducers,” NDT&E Int., vol. 34, pp. 355-362, 2001.
[64] Y. C. Lee and S. H. Kuo, “A new point contact surface acoustic wave transducer for measurement of acoustoelastic effect of polymethylmethacrylate,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control., vol. 51, pp. 114-120, 2004.
[65] M. Obata, H. Shimada, and T. Hihara, “Stress dependence of leaky-surface wave on PMMA by line-focus-beam microscope,” Exp. Mech., vol. 30, pp. 34-39, 1990.
[66] Z. Wei, X. Zhou, and Y. Cheng, “Acoustoelastic determination of local surface stresses in polymethylmethacrylate,” Appl. Acoust.,vol. 61, pp. 447-485, 2000.
[67] D. Husson, S. D. Bennett, and G. S. Kino, “Measurement of stress with surface wave,” Mat. Eval., vol. 43, pp. 92-100, 1985.
[68] C. Bescond, J. P. Monchalin, D. Lévesque, A. Gilbert, R. Talbot, and M. Ochiai, “Determination of residual stresses using laser-generated surface skimming longitudinal waves,” Proceedings of SPIE. Nondestructive Evaluation and Health Monitoring of Aerospace Materials, Composites and Civil Infrastructure IV, vol. 5767, pp. 175-186, 2005.
[69] C. Bescond, D. Lévesque, M. Lord, J. P. Monchalin, and S. Forgues, “Laser-generated surface skimming longitudinal wave measurement of residual stress in shot peened samples,” In: Review of Quantitative Nondestructive Evaluation, ed. by D. O. Thompson and D. E. Chimenti, AIP Conf. Proc., New York, America, pp. 1426-1433, 2006.
[70] S. Eldevik, Åge A. F. Olsen, and P. Lunde, “Sound velocity change owing to the acousto-elastic/plastic effect in steel measured using Acoustic Resonance Technology (ART)”, Scandianvain Symposium on Physical Acoustics, 2012.
[71] J. D. Achenbach, Wave propagation in elastic solids, Elsevier Science, New York, America, 1984.
[72] B. Auld, Acoustic fields and waves in solids, vol. 2, Krieger Publishing Company, Malabar, Florida, 1990.
[73] M. J. S. Lowe, “Matrix techniques for modelling ultrasonic waves in multilayered media”, IEEE Trans. Ultrason. Ferroelectr. Freq. Control., vol. 42, pp. 525-542, 1995.
[74] B. Pavalakovic, M. J. S. Lowe, D. N. Alleyne, and P. Cawley, “Disperse: a general purpose program for creating dispersion curves”, ed. by D. O. Thompson, D. E. Chimenti, Review of Progress in Quantitative NDE, vol. 16, Plenum Press, New York, pp. 185-192, 1997.
[75] E. Soczkiewicz, “The penetration depth of the Rayleigh surface waves,” Nondestr. Test. Eval., vol. 13, pp. 113-119, 1997.
[76] ASTM standard E8/E8M, “Standard test methods for tension testing of metallic materials.” ASTM Int. West Conshohocken, PA, 2009. DOI: 10.1520/E0008_E0008M-09.
[77] G. R. Gerhart, “Rayleigh wave velocity for a stress-induced slightly anisotropic solid,” J. Acoust. Soc. Am., vol. 60, pp. 1085-1088, 1976.