| 研究生: |
吳宗諭 Wu, Zong-Yu |
|---|---|
| 論文名稱: |
以高溫爐長成有機碘化鉛鈣鈦礦微米材料之光性分析 Photoluminescence Properties of Microstructural CH3NH3PbI3 Perovskite Prepared by Thermal Evaporation |
| 指導教授: |
徐旭政
Hsu, Hsu-Cheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 95 |
| 中文關鍵詞: | 鈣鈦礦 、高溫爐 、螢光 、濕度 |
| 外文關鍵詞: | CH3NH3PbI3 perovskite, vapor deposition, photoluminescence, humidity |
| 相關次數: | 點閱:130 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文探討使用高溫爐進行氣相沉積法(Vapor deposition method)長成之鈣鈦礦(perovskite)薄膜進行室溫環境光性量測分析。利用電子顯微鏡(SEM)對鈣鈦礦晶體之形貌與晶體形狀分析,確認其轉換前後之大小分布、形貌變化與構成。在光性分析方面,透過吸收圖譜、穿透圖譜、室溫及低溫螢光光譜量測,確認其能隙(bandgap)分布。透過532奈米連續雷射進行樣品激發並觀察、分析樣品之螢光性質,如:光穩定度。而我們在量測過程中,透過雷射聚焦樣品之不同深淺位置,觀測到雙峰螢光訊號,並確認樣品之構成有可能不同,使用XRD進行物質構成分析,對此現象推斷出較佳的解釋。
在量測氣相法及旋塗法生成之鈣鈦礦光譜實驗時,樣品所處之濕度接此於相對濕度50%,此濕度十分接近國外學者之高濕度環境。有此得知,吾人所作之樣品具有相當高之穩定性及壽命。
We report the optical characterizations of perovskite (CH3NH3PbI3) thin films prepared by vapor deposition method. By SEM, we could observe the difference of crystal size and shape between PbI2 and CH3NH3PbI3 prepared by vapor deposition method. The absorbance and transition spectra were investigated to confirm the optical difference between PbI2 and CH3NH3PbI3. Photoluminescence peak of the perovskite films at 780 nm excited via 532 nm CW laser at room temperature was observed, and we confirm the bandgap is around 1.58 eV at room temperature through experiments stated above and temperature-dependent PL measurement. We also found that high photoluminescence stability of perovskite films prepared by vapor deposition at high relative humidity. Last, we observed emission peak located at about 780 nm, and we change the depths of the films which 532 nm CW laser focuses on to observe PL spectra. We found the appearance of two peaks. Through XRD patterns, we could infer the origins of this feature.
All measurements except temperature-dependent PL spectra are processed at room temperature and 50% relative humidity. This humidity is much higher than other foreign studies. Perovskite material has high sensitivity to water molecules, so people would prevent perovskite samples from water or high humidity. Thus, our sample is very strong.
[1] W. J. Yin, T. Shi, and Y. Yan, "Unique properties of halide perovskites as possible origins of the superior solar cell performance," Adv Mater, vol. 26, pp. 4653-8, 2014.
[2] C. R. Kagan, D. B. Mitzi, and C. D. Dimitrakopoulos, "Organic-Inorganic Hybrid Materials as Semiconducting Channels in Thin-Film Field-Effect Transistors," Science, vol. 286, pp. 945-947, 1999.
[3] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, "Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells," Journal of the American Chemical Society, vol. 131, pp. 6050-6051, 2009.
[4] M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, "Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites," Science, vol. 338, pp. 643-647, 2012.
[5] M. Liu, M. B. Johnston, and H. J. Snaith, "Efficient planar heterojunction perovskite solar cells by vapour deposition," Nature, vol. 501, pp. 395-398, 2013.
[6] N. J. Jeon, J. H. Noh, W. S. Yang, Y. C. Kim, S. Ryu, J. Seo, et al., "Compositional engineering of perovskite materials for high-performance solar cells," Nature, vol. 517, pp. 476-480, 2015.
[7] H. Zhou, Q. Chen, G. Li, S. Luo, T.-b. Song, H.-S. Duan, et al., "Interface engineering of highly efficient perovskite solar cells," Science, vol. 345, pp. 542-546, 2014.
[8] A. Fu and P. Yang, "Organic-inorganic perovskites: Lower threshold for nanowire lasers," Nat Mater, vol. 14, pp. 557-558, 2015.
[9] Y. Fang, Q. Dong, Y. Shao, Y. Yuan, and J. Huang, "Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination," Nat Photon, vol. 9, pp. 679-686, 2015.
[10] Y.-H. Kim, H. Cho, J. H. Heo, T.-S. Kim, N. Myoung, C.-L. Lee, et al., "Multicolored Organic/Inorganic Hybrid Perovskite Light-Emitting Diodes," Advanced Materials, vol. 27, pp. 1248-1254, 2015.
[11] L. Dou, Y. Yang, J. You, Z. Hong, W.-H. Chang, G. Li, et al., "Solution-processed hybrid perovskite photodetectors with high detectivity," Nat Commun, vol. 5, 2014.
[12] G. Xing, N. Mathews, S. S. Lim, N. Yantara, X. Liu, D. Sabba, et al., "Low-temperature solution-processed wavelength-tunable perovskites for lasing," Nat Mater, vol. 13, pp. 476-480, 2014.
[13] H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, et al., "Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors," Nat Mater, vol. 14, pp. 636-642, 2015.
[14] W.-J. Yin, T. Shi, and Y. Yan, "Unique Properties of Halide Perovskites as Possible Origins of the Superior Solar Cell Performance," Advanced Materials, vol. 26, pp. 4653-4658, 2014.
[15] C. W. Chen, H. W. Kang, S. Y. Hsiao, P. F. Yang, K. M. Chiang, and H. W. Lin, "Efficient and Uniform Planar-Type Perovskite Solar Cells by Simple Sequential Vacuum Deposition," Advanced Materials, vol. 26, pp. 6647-6652, 2014.
[16] Q. Zhang, S. T. Ha, X. Liu, T. C. Sum, and Q. Xiong, "Room-Temperature Near-Infrared High-Q Perovskite Whispering-Gallery Planar Nanolasers," Nano Letters, vol. 14, pp. 5995-6001, 2014.
[17] S. T. Ha, X. Liu, Q. Zhang, D. Giovanni, T. C. Sum, and Q. Xiong, "Synthesis of Organic-Inorganic Lead Halide Perovskite Nanoplatelets: Towards High-Performance Perovskite Solar Cells and Optoelectronic Devices," Advanced Optical Materials, vol. 2, pp. 838-844, 2014.
[18] M. A. Green, A. Ho-Baillie, and H. J. Snaith, "The emergence of perovskite solar cells," Nat Photon, vol. 8, pp. 506-514, 2014.
[19] A. Poglitsch and D. Weber, "Dynamic disorder in methylammoniumtrihalogenoplumbates (II) observed by millimeter‐wave spectroscopy," The Journal of Chemical Physics, vol. 87, pp. 6373-6378, 1987.
[20] T. Baikie, Y. Fang, J. M. Kadro, M. Schreyer, F. Wei, S. G. Mhaisalkar, et al., "Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications," Journal of Materials Chemistry A, vol. 1, pp. 5628-5641, 2013.
[21] S. T. A. G. Melissen, F. Labat, P. Sautet, and T. Le Bahers, "Electronic properties of PbX3CH3NH3 (X = Cl, Br, I) compounds for photovoltaic and photocatalytic applications," Physical Chemistry Chemical Physics, vol. 17, pp. 2199-2209, 2015.
[22] M. A. Pena and J. L. G. Fierro, "Chemical structures and performance of perovskite oxides," Chemical Reviews, vol. 101, pp. 1981-2017, 2001.
[23] G. Kieslich, S. Sun, and A. K. Cheetham, "Solid-state principles applied to organic-inorganic perovskites: new tricks for an old dog," Chemical Science, vol. 5, pp. 4712-4715, 2014.
[24] H. S. Kim, S. H. Im, and N. G. Park, "Organolead Halide Perovskite: New Horizons in Solar Cell Research," The Journal of Physical Chemistry C, vol. 118, pp. 5615-5625, 2014.
[25] C. H. Li, X. G. Lu, W. Z. Ding, L. M. Feng, Y. H. Gao, and Z. G. Guo, "Formability of ABX(3) (X = F, Cl, Br, I) halide perovskites," Acta Crystallographica Section B-Structural Science, vol. 64, pp. 702-707, 2008.
[26] W. J. Yin, J. H. Yang, J. Kang, Y. Yan, and S. H. Wei, "Halide perovskite materials for solar cells: a theoretical review," Journal of Materials Chemistry A, vol. 3, pp. 8926-8942, 2015.
[27] J. Feng and B. Xiao, "Crystal Structures, Optical Properties, and Effective Mass Tensors of CH3NH3PbX3 (X = I and Br) Phases Predicted from HSE06," The Journal of Physical Chemistry Letters, vol. 5, pp. 1278-1282, 2014.
[28] P. Pistor, J. Borchert, W. Fränzel, R. Csuk, and R. Scheer, "Monitoring the Phase Formation of Coevaporated Lead Halide Perovskite Thin Films by in Situ X-ray Diffraction," The Journal of Physical Chemistry Letters, vol. 5, pp. 3308-3312, 2014.
[29] E. Mosconi, A. Amat, M. K. Nazeeruddin, M. Grätzel, and F. De Angelis, "First-Principles Modeling of Mixed Halide Organometal Perovskites for Photovoltaic Applications," The Journal of Physical Chemistry C, vol. 117, pp. 13902-13913, 2013.
[30] K. T. Butler, J. M. Frost, and A. Walsh, "Band alignment of the hybrid halide perovskites CH3NH3PbCl3, CH3NH3PbBr3 and CH3NH3PbI3," Materials Horizons, vol. 2, pp. 228-231, 2015.
[31] J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, "Chemical Management for Colorful, Efficient, and Stable Inorganic–Organic Hybrid Nanostructured Solar Cells," Nano Letters, vol. 13, pp. 1764-1769, 2013.
[32] G. Giorgi, J.-I. Fujisawa, H. Segawa, and K. Yamashita, "Cation Role in Structural and Electronic Properties of 3D Organic–Inorganic Halide Perovskites: A DFT Analysis," The Journal of Physical Chemistry C, vol. 118, pp. 12176-12183, 2014.
[33] C. Motta, F. El-Mellouhi, S. Kais, N. Tabet, F. Alharbi, and S. Sanvito, "Revealing the role of organic cations in hybrid halide perovskite CH3NH3PbI3," Nat Commun, vol. 6, 2015.
[34] W. Ke, G. Fang, J. Wan, H. Tao, Q. Liu, L. Xiong, et al., "Efficient hole-blocking layer-free planar halide perovskite thin-film solar cells," Nat Commun, vol. 6, 2015.
[35] M. R. Filip, G. E. Eperon, H. J. Snaith, and F. Giustino, "Steric engineering of metal-halide perovskites with tunable optical band gaps," Nat Commun, vol. 5, 2014.
[36] A. Amat, E. Mosconi, E. Ronca, C. Quarti, P. Umari, M. K. Nazeeruddin, et al., "Cation-Induced Band-Gap Tuning in Organohalide Perovskites: Interplay of Spin–Orbit Coupling and Octahedra Tilting," Nano Letters, vol. 14, pp. 3608-3616, 2014.
[37] R. L. Milot, G. E. Eperon, H. J. Snaith, M. B. Johnston, and L. M. Herz, "Temperature-Dependent Charge-Carrier Dynamics in CH3NH3PbI3 Perovskite Thin Films," Advanced Functional Materials, vol. 25, pp. 6218-6227, 2015.
[38] C. Wehrenfennig, M. Liu, H. J. Snaith, M. B. Johnston, and L. M. Herz, "Homogeneous Emission Line Broadening in the Organo Lead Halide Perovskite CH3NH3PbI3-xClx," J Phys Chem Lett, vol. 5, pp. 1300-6, 2014.
[39] Y. Yamada, T. Nakamura, M. Endo, A. Wakamiya, and Y. Kanemitsu, "Photoelectronic Responses in Solution-Processed Perovskite CH3NH3PbI3 Solar Cells Studied by Photoluminescence and Photoabsorption Spectroscopy," Ieee Journal of Photovoltaics, vol. 5, pp. 401-405, 2015.
[40] V. D'Innocenzo, G. Grancini, M. J. Alcocer, A. R. Kandada, S. D. Stranks, M. M. Lee, et al., "Excitons versus free charges in organo-lead tri-halide perovskites," Nat Commun, vol. 5, p. 3586, 2014.
[41] J. Even, L. Pedesseau, and C. Katan, "Analysis of Multivalley and Multibandgap Absorption and Enhancement of Free Carriers Related to Exciton Screening in Hybrid Perovskites," Journal of Physical Chemistry C, vol. 118, pp. 11566-11572, 2014.
[42] A. Poglitsch and D. Weber, "Dynamic disorder in methylammoniumtrihalogenoplumbates(ii) observed by millimeter-wave spectroscopy," Journal of Chemical Physics, vol. 87, pp. 6373-6378, 1987.
[43] M. A. Green, A. Ho-Baillie, and H. J. Snaith, "The emergence of perovskite solar cells," Nature Photonics, vol. 8, pp. 506-514, 2014.
[44] T. Ishihara, "Optical-properties of PbI-based perovskite structures," Journal of Luminescence, vol. 60-1, pp. 269-274, 1994.
[45] J. Even, L. Pedesseau, C. Katan, M. Kepenekian, J. S. Lauret, D. Sapori, et al., "Solid-State Physics Perspective on Hybrid Perovskite Semiconductors," Journal of Physical Chemistry C, vol. 119, pp. 10161-10177, 2015.
[46] T. Baikie, Y. N. Fang, J. M. Kadro, M. Schreyer, F. X. Wei, S. G. Mhaisalkar, et al., "Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications," Journal of Materials Chemistry A, vol. 1, pp. 5628-5641, 2013.
[47] J. Even, L. Pedesseau, J. M. Jancu, and C. Katan, "DFT and k . p modelling of the phase transitions of lead and tin halide perovskites for photovoltaic cells," Physica Status Solidi-Rapid Research Letters, vol. 8, pp. 31-35, 2014.
[48] V. D'Innocenzo, A. R. Srimath Kandada, M. De Bastiani, M. Gandini, and A. Petrozza, "Tuning the light emission properties by band gap engineering in hybrid lead halide perovskite," J Am Chem Soc, vol. 136, pp. 17730-3, 2014.
[49] S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. Alcocer, T. Leijtens, et al., "Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber," Science, vol. 342, pp. 341-4, 2013.
[50] P. Docampo, F. C. Hanusch, S. D. Stranks, M. Döblinger, J. M. Feckl, M. Ehrensperger, et al., "Solution Deposition-Conversion for Planar Heterojunction Mixed Halide Perovskite Solar Cells," Advanced Energy Materials, vol. 4, pp. n/a-n/a, 2014.
[51] M.-G. Ju, G. Sun, Y. Zhao, and W. Liang, "A computational view of the change in the geometric and electronic properties of perovskites caused by the partial substitution of Pb by Sn," Physical Chemistry Chemical Physics, vol. 17, pp. 17679-17687, 2015.
[52] F. Brivio, A. B. Walker, and A. Walsh, "Structural and electronic properties of hybrid perovskites for high-efficiency thin-film photovoltaics from first-principles," APL Mater., vol. 1, p. 042111, 2013.
[53] Q. Wang, Y. Shao, H. Xie, L. Lyu, X. Liu, Y. Gao, et al., "Qualifying composition dependent p and n self-doping in CH3NH3PbI3," Applied Physics Letters, vol. 105, p. 163508, 2014.
[54] Y. Takahashi, R. Obara, Z. Z. Lin, Y. Takahashi, T. Naito, T. Inabe, et al., "Charge-transport in tin-iodide perovskite CH3NH3SnI3: origin of high conductivity," Dalton Transactions, vol. 40, pp. 5563-5568, 2011.
[55] C. C. Stoumpos, C. D. Malliakas, and M. G. Kanatzidis, "Semiconducting Tin and Lead Iodide Perovskites with Organic Cations: Phase Transitions, High Mobilities, and Near-Infrared Photoluminescent Properties," Inorganic Chemistry, vol. 52, pp. 9019-9038, 2013.
[56] T. Y. Yang, G. Gregori, N. Pellet, M. Grätzel, and J. Maier, "The Significance of Ion Conduction in a Hybrid Organic–Inorganic Lead-Iodide-Based Perovskite Photosensitizer," Angewandte Chemie, vol. 127, pp. 8016-8021, 2015.
[57] O. Knop, R. E. Wasylishen, M. A. White, T. S. Cameron, and M. J. M. V. Oort, "Alkylammonium lead halides. Part 2. CH3NH3PbX3 (X=Cl, Br, I) perovskites: cuboctahedral halide cages with isotropic cation reorientation," Canadian Journal of Chemistry, vol. 68, pp. 412-422, 1990.
[58] E. J. Juarez-Perez, R. S. Sanchez, L. Badia, G. Garcia-Belmonte, Y. S. Kang, I. Mora-Sero, et al., "Photoinduced Giant Dielectric Constant in Lead Halide Perovskite Solar Cells," The Journal of Physical Chemistry Letters, vol. 5, pp. 2390-2394, 2014.
[59] J. H. Im, C. R. Lee, J. W. Lee, S. W. Park, and N. G. Park, "6.5% efficient perovskite quantum-dot-sensitized solar cell," Nanoscale, vol. 3, pp. 4088-4093, 2011.
[60] J. H. Heo, S. H. Im, J. H. Noh, T. N. Mandal, C. S. Lim, J. A. Chang, et al., "Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors," Nat Photon, vol. 7, pp. 486-491, 2013.
[61] Z. Xiao, Q. Dong, C. Bi, Y. Shao, Y. Yuan, and J. Huang, "Solvent Annealing of Perovskite-Induced Crystal Growth for Photovoltaic-Device Efficiency Enhancement," Advanced Materials, vol. 26, pp. 6503-6509, 2014.
[62] J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, et al., "Sequential deposition as a route to high-performance perovskite-sensitized solar cells," Nature, vol. 499, pp. 316-319, 2013.
[63] Z. Song, S. C. Watthage, A. B. Phillips, B. L. Tompkins, R. J. Ellingson, and M. J. Heben, "Impact of Processing Temperature and Composition on the Formation of Methylammonium Lead Iodide Perovskites," Chemistry of Materials, vol. 27, pp. 4612-4619, 2015.
[64] Y. Tidhar, E. Edri, H. Weissman, D. Zohar, G. Hodes, D. Cahen, et al., "Crystallization of methyl ammonium lead halide perovskites: implications for photovoltaic applications," J Am Chem Soc, vol. 136, pp. 13249-56, 2014.
[65] T. Kollek, D. Gruber, J. Gehring, E. Zimmermann, L. Schmidt-Mende, and S. Polarz, "Porous and shape-anisotropic single crystals of the semiconductor perovskite CH3NH3PbI3 from a single-source precursor," Angew Chem Int Ed Engl, vol. 54, pp. 1341-6, 2015.
[66] Y. Liu, Z. Yang, D. Cui, X. Ren, J. Sun, X. Liu, et al., "Two-Inch-Sized Perovskite CH3NH3PbX3 (X = Cl, Br, I) Crystals: Growth and Characterization," Adv Mater, vol. 27, pp. 5176-83, 2015.
[67] Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, et al., "Electron-hole diffusion lengths > 175 mum in solution-grown CH3NH3PbI3 single crystals," Science, vol. 347, pp. 967-70, 2015.
[68] D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, et al., "Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals," Science, vol. 347, pp. 519-22, 2015.
[69] Q. Liao, K. Hu, H. Zhang, X. Wang, J. Yao, and H. Fu, "Perovskite Microdisk Microlasers Self-Assembled from Solution," Adv Mater, vol. 27, pp. 3405-10, 2015.
[70] M. I. Saidaminov, A. L. Abdelhady, B. Murali, E. Alarousu, V. M. Burlakov, W. Peng, et al., "High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization," Nat Commun, vol. 6, 2015.
[71] S. Zhuo, J. Zhang, Y. Shi, Y. Huang, and B. Zhang, "Self-template-directed synthesis of porous perovskite nanowires at room temperature for high-performance visible-light photodetectors," Angew Chem Int Ed Engl, vol. 54, pp. 5693-6, 2015.
[72] E. Horvath, M. Spina, Z. Szekrenyes, K. Kamaras, R. Gaal, D. Gachet, et al., "Nanowires of methylammonium lead iodide (CH3NH3PbI3) prepared by low temperature solution-mediated crystallization," Nano Lett, vol. 14, pp. 6761-6, 2014.
[73] J. H. Im, J. Luo, M. Franckevicius, N. Pellet, P. Gao, T. Moehl, et al., "Nanowire perovskite solar cell," Nano Lett, vol. 15, pp. 2120-6, 2015.
[74] L. C. Schmidt, A. Pertegas, S. Gonzalez-Carrero, O. Malinkiewicz, S. Agouram, G. Minguez Espallargas, et al., "Nontemplate synthesis of CH3NH3PbBr3 perovskite nanoparticles," J Am Chem Soc, vol. 136, pp. 850-3, 2014.
[75] J. H. Im, C. R. Lee, J. W. Lee, S. W. Park, and N. G. Park, "6.5% efficient perovskite quantum-dot-sensitized solar cell," Nanoscale, vol. 3, pp. 4088-93, 2011.
[76] F. Zhang, H. Zhong, C. Chen, X. G. Wu, X. Hu, H. Huang, et al., "Brightly Luminescent and Color-Tunable Colloidal CH3NH3PbX3 (X = Br, I, Cl) Quantum Dots: Potential Alternatives for Display Technology," ACS Nano, vol. 9, pp. 4533-42, 2015.
[77] Y. Fu, F. Meng, M. B. Rowley, B. J. Thompson, M. J. Shearer, D. Ma, et al., "Solution growth of single crystal methylammonium lead halide perovskite nanostructures for optoelectronic and photovoltaic applications," J Am Chem Soc, vol. 137, pp. 5810-8, 2015.
[78] W. Tian, C. Zhao, J. Leng, R. Cui, and S. Jin, "Visualizing Carrier Diffusion in Individual Single-Crystal Organolead Halide Perovskite Nanowires and Nanoplates," J Am Chem Soc, vol. 137, pp. 12458-61, 2015.
[79] D. M. Jang, K. Park, D. H. Kim, J. Park, F. Shojaei, H. S. Kang, et al., "Reversible Halide Exchange Reaction of Organometal Trihalide Perovskite Colloidal Nanocrystals for Full-Range Band Gap Tuning," Nano Lett, vol. 15, pp. 5191-9, 2015.
[80] L. Dou, A. B. Wong, Y. Yu, M. Lai, N. Kornienko, S. W. Eaton, et al., "Atomically thin two-dimensional organic-inorganic hybrid perovskites," Science, vol. 349, pp. 1518-21, 2015.
[81] J. You, Y. Yang, Z. Hong, T. B. Song, L. Meng, Y. Liu, et al., "Moisture assisted perovskite film growth for high performance solar cells," Applied Physics Letters, vol. 105, p. 183902, 2014.
[82] H. S. Ko, J. W. Lee, and N. G. Park, "15.76% efficiency perovskite solar cells prepared under high relative humidity: importance of PbI2 morphology in two-step deposition of CH3NH3PbI3," Journal of Materials Chemistry A, vol. 3, pp. 8808-8815, 2015.
[83] L. Niu, X. Liu, C. Cong, C. Wu, D. Wu, T. R. Chang, et al., "Controlled Synthesis of Organic/Inorganic van der Waals Solid for Tunable Light-Matter Interactions," Adv Mater, vol. 27, pp. 7800-8, Dec 16 2015.
[84] J. A. Christians, P. A. Miranda Herrera, and P. V. Kamat, "Transformation of the Excited State and Photovoltaic Efficiency of CH3NH3PbI3 Perovskite upon Controlled Exposure to Humidified Air," Journal of the American Chemical Society, vol. 137, pp. 1530-1538, 2015.
[85] S. N. Habisreutinger, T. Leijtens, G. E. Eperon, S. D. Stranks, R. J. Nicholas, and H. J. Snaith, "Carbon Nanotube/Polymer Composites as a Highly Stable Hole Collection Layer in Perovskite Solar Cells," Nano Letters, vol. 14, pp. 5561-5568, 2014.
[86] J. Yang, B. D. Siempelkamp, D. Liu, and T. L. Kelly, "Investigation of CH3NH3PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques," ACS Nano, vol. 9, pp. 1955-63, 2015.
[87] S. Pathak, A. Sepe, A. Sadhanala, F. Deschler, A. Haghighirad, N. Sakai, et al., "Atmospheric Influence upon Crystallization and Electronic Disorder and Its Impact on the Photophysical Properties of Organic–Inorganic Perovskite Solar Cells," ACS Nano, vol. 9, pp. 2311-2320, 2015.
[88] S. R. Raga, M. C. Jung, M. V. Lee, M. R. Leyden, Y. Kato, and Y. Qi, "Influence of Air Annealing on High Efficiency Planar Structure Perovskite Solar Cells," Chemistry of Materials, vol. 27, pp. 1597-1603, 2015.
[89] K. K. Bass, R. E. McAnally, S. Zhou, P. I. Djurovich, M. E. Thompson, and B. C. Melot, "Influence of moisture on the preparation, crystal structure, and photophysical properties of organohalide perovskites," Chemical Communications, vol. 50, pp. 15819-15822, 2014.
[90] G. E. Eperon, S. N. Habisreutinger, T. Leijtens, B. J. Bruijnaers, J. J. van Franeker, D. W. deQuilettes, et al., "The Importance of Moisture in Hybrid Lead Halide Perovskite Thin Film Fabrication," ACS Nano, vol. 9, pp. 9380-9393, 2015.
[91] K. W. Tan, D. T. Moore, M. Saliba, H. Sai, L. A. Estroff, T. Hanrath, et al., "Thermally induced structural evolution and performance of mesoporous block copolymer-directed alumina perovskite solar cells," ACS Nano, vol. 8, pp. 4730-9, 2014.
[92] D. W. deQuilettes, S. M. Vorpahl, S. D. Stranks, H. Nagaoka, G. E. Eperon, M. E. Ziffer, et al., "Impact of microstructure on local carrier lifetime in perovskite solar cells," Science, vol. 348, pp. 683-6, 2015.
[93] M. Era, T. Hattori, T. Taira, and T. Tsutsui, "Self-Organized Growth of PbI-Based Layered Perovskite Quantum Well by Dual-Source Vapor Deposition," Chemistry of Materials, vol. 9, pp. 8-10, 1997.
[94] D. B. Mitzi, M. T. Prikas, and K. Chondroudis, "Thin Film Deposition of Organic−Inorganic Hybrid Materials Using a Single Source Thermal Ablation Technique," Chemistry of Materials, vol. 11, pp. 542-544, 1999.
[95] L. K. Ono, M. R. Leyden, S. Wang, and Y. Qi, "Organometal halide perovskite thin films and solar cells by vapor deposition," Journal of Materials Chemistry A, vol. 4, pp. 6693-6713, 2016.
[96] O. Malinkiewicz, A. Yella, Y. H. Lee, G. M. Espallargas, M. Graetzel, M. K. Nazeeruddin, et al., "Perovskite solar cells employing organic charge-transport layers," Nat Photon, vol. 8, pp. 128-132, 2014.
[97] M. Sessolo, C. Momblona, L. Gil-Escrig, and H. J. Bolink, "Photovoltaic devices employing vacuum-deposited perovskite layers," MRS Bulletin, vol. 40, pp. 660-666, 2015.
[98] Q. Chen, H. Zhou, Z. Hong, S. Luo, H. S. Duan, H.-H. Wang, et al., "Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process," Journal of the American Chemical Society, vol. 136, pp. 622-625, 2014.
[99] J. Xing, X. F. Liu, Q. Zhang, S. T. Ha, Y. W. Yuan, C. Shen, et al., "Vapor Phase Synthesis of Organometal Halide Perovskite Nanowires for Tunable Room-Temperature Nanolasers," Nano Letters, vol. 15, pp. 4571-4577, 2015.
[100] T. Schmidt, K. Lischka, and W. Zulehner, "Excitation-power dependence of the near-band-edge photoluminescence of semiconductors," Physical Review B, vol. 45, pp. 8989-8994, 1992.
[101] H. He, Q. Yu, H. Li, J. Li, J. Si, Y. Jin, et al., "Exciton localization in solution-processed organolead trihalide perovskites," Nat Commun, vol. 7, 2016.
[102] X. Fang, K. Zhang, Y. Li, L. Yao, Y. Zhang, Y. Wang, et al., "Effect of excess PbBr2 on photoluminescence spectra of CH3NH3PbBr3 perovskite particles at room temperature," Applied Physics Letters, vol. 108, p. 071109, 2016.
[103] A. Calloni, A. Abate, G. Bussetti, G. Berti, R. Yivlialin, F. Ciccacci, et al., "Stability of Organic Cations in Solution-Processed CH3NH3PbI3 Perovskites: Formation of Modified Surface Layers," The Journal of Physical Chemistry C, vol. 119, pp. 21329-21335, 2015.
校內:2019-08-22公開