| 研究生: |
陳令妮 Chen, Lin-ni |
|---|---|
| 論文名稱: |
PTCDI-C8H17薄膜之磊晶機制 Growth Model of N-Octyl Perylene Diimide Films |
| 指導教授: |
周維揚
Chou, Wei-Yang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程研究所 Institute of Electro-Optical Science and Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 74 |
| 中文關鍵詞: | 吸收光譜 、有機薄膜電晶體 、有機駢苯衍生物 、原子力顯微鏡 、X-ray 繞射 、光激螢光光譜 、表面能 |
| 外文關鍵詞: | organic thin film transistor, absorption spectroscopy, organic perylene derivatives, X-ray diffraction, atomic force microscope, surface energy, photoluminescence |
| 相關次數: | 點閱:109 下載:18 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文利用具有潛力的有機駢苯衍生物N,N'-dioctyl-3,4,9,10- perylene tetracarboxylic diimide (PTCDI-C8H17)為主體,進行各種薄膜分析,利用不同厚度之PTCDI-C8H17薄膜成長在兩種不同的基板,基板上有介電層二氧化矽與聚醯亞胺上,探討不同厚度之PTCDI-C8H17分子的成長與結晶狀況。
實驗中藉由X-ray繞射、原子力顯微鏡與表面能等分析來了解PTCDI-C8H17分子的堆疊情形,且利用光激螢光光譜、吸收光譜的分析探討PTCDI-C8H17能隙隨不同磊晶厚度的變化,並製作出頂部接觸型的N型有機薄膜電晶體,進一步的了解PTCDI-C8H17薄膜的結構與元件電特性的關係。
透過X-ray繞射、原子力顯微鏡與表面能的分析結果可以發現PTCDI-C8H17薄膜初期成長時受到基板與有機半導體層表面能不匹配所造成的應力影響,其堆疊出來的結晶較零亂,而當薄膜逐漸成形時PTCDI-C8H17分子只受本身分子作用力影響,其結晶度比較高。從光激螢光光譜、吸收光譜的分析中,可以發現當厚度增加時分子間作用力變大,使得PTCDI-C8H17薄膜的能隙變小。從以上分析可以發現PTCDI-C8H17分子在PI上有較佳的成長環境,最後在載子遷移率的分析也確實驗證出PTCDI-C8H17薄膜成長在PI上時有較佳的表現。
依薄膜分析的結果,發現當厚度增加時,越有利載子的傳輸,但是從有機薄膜電晶體元件整體分析的結果並不是如此,PTCDI-C8H17薄膜成長在二氧化矽或聚醯亞胺上時,載子遷移率在厚度為50 nm時是最佳的,這可能是由於隨著PTCDI-C8H17薄膜厚度增加時,元件的串聯電阻逐漸增加使得元件整體的載子遷移率下降。
Organic semiconductor- N, N'-dioctyl-3, 4, 9, 10- perylene tetracarboxylic diimide (PTCDI-C8H17) has potential in the research of flexible electronics by analyzing the characteristics of its thin film. Through different thicknesses of PTCDI-C8H17 thin film deposited on polyimide (PI) or silicon dioxide dielectric surface, the growth mechanism and crystal structure of the PTCDI-C8H17 films were discussed. The stack process of PTCDI-C8H17 molecules on the dielectric could be obtained by X-ray diffraction, atomic force microscopy, and analysis of surface. Through the analyses of photoluminescence and absorption spectroscopy, we could investigate the change of the energy gap of the PTCDI-C8H17 film with different thicknesses. Finally, top-contact organic thin film transistors (OTFTs) were fabricated by using PTCDI-C8H17 as active layers to understand further the relationship between the structure of the active layer and the electrical characteristics of the device.
The early stage of growth of PTCDI-C8H17 thin film could be found through analyses of X-ray diffraction, atomic force microscopy, and surface energy. Poor crystallization of PTCDI-C8H17 in early stage of growth was due to the surface energy mismatch between substrate and organic semiconductor layer. Furthermore, the crystalline of PTCDI-C8H17 molecules on PI was better than that on SiO2 from the analyses of photoluminescence and absorption spectroscopy; therefore, the better performance for PTCDI-C8H17–base OTFT using the PI as dielectric could be expected. According to the results of the variation of the PTCDI-C8H17 thin film, the optimal thickness of the PTCDI-C8H17 thin film was 50 nm to achieve a high performance OTFT. The series resistance of PTCDI-C8H17 thin film transistor increased to decline the field-effect mobility of the OTFT when the increase of the PTCDI-C8H17 film thickness.
[1] M. L. Swiggers, G. Xia, J. D. Slinker, A. A. Gorodetsky, G. G. Malliaras, R. L. Headrick, Brian T. Weslowski, R. N. Shashidhar, C. S. Dulcey, “Orientation of pentacene films using surface alignment layers and its influence on thin-film transistor characteristics” Appl. Phys. Lett. 79, 1300 (2001).
[2] 郭家瑋,“有機薄膜電晶體之載子傳輸特性研究”,國立成功大學博士論文 (2006).
[3] S. Tatemichi, M. Ichikawa, T. Koyama , Y. Taniguchi, “High mobility n-type thin-film transistors based on N,N-ditridecyl perylene diimide with thermal treatments” Appl. Phys. Lett. 89, 112108 (2006).
[4] 黃佑沂,“不同退火溫度之有機駢苯衍生物薄膜電晶體特性研究”,國立成功大學碩士論文 (2007).
[5] S.M. Sze, “Semiconductor devices”, Wiley, New York, p.169 (2002).
[6] H. Koezuka, A. Tsumura, T. Ando, “Field-effect Transistors with polythiophene thin film”, Synth. Met. 18, 699 (1987).
[7] 白木靖寬,吉田貞史編著,王建義編譯,“薄膜工程學(三版)”, 全華科技圖書股份有限公司 (2008).
[8] 林士廷,“有機發光二極體光源之偏極化研究”,國立成功大學碩士論文 (2004).
[9] D. R. T. Zahn, T. U. Kampen, H. Méndez, “Transport gap of organic semiconductors in organic modified Schottky contacts”, Appl. Surf. Sci. 423, 212-213 (2003).
[10] 黃銘湧,“具不同烷基駢苯衍生物之有機薄膜電晶體特性研究”,國立成功大學碩士論文 (2007)
[11] 林鶴南,李龍正,劉克迅,“原子力顯微術及其在半導體研究上的應用”,科儀新知,第17卷第3期,29–35頁 (1995).
[12] Skoog, Holler, Nieman,“Principles of Instrumental Analysis”, Saunders College Publishing (1992).
[13] S. Y. Yang, K. Shin, C. E. Park,“The Effect of Gate-Dielectric Surface Energy on Pentacene Morphology and Organic Field-Effect Transistor Characteristics”, Adv. Funct. Mater. 15,1806 (2005).
[14] J. I. Langford, A. J. C. Wilson,“Scherrer after sixty years: A survey and some new results in the determination of crystallite size ”, J. Appl. Cryst. 11, 102-113 (1978).
[15] B. Wolfgang ,“Physics of Organic Semiconductors”, Wiley-VCH, Weinheim 2005, p.15.
[16] 林益生,“以烷基駢苯衍生物作為主動層之有機薄膜電晶體”,國立成功大學碩士論文 (2008).
[17] A. Datta, S. Mohakud, S. K. Pati, “Comparing the electron and hole mobilities in the and phases of perylene: role of -stacking”, J. Mater. Chem. 17, 1933–1938 (2007).
[18] W. Barford, “Exciton transfer integrals between polymer chains”, J. Chem. Phys. 126, 134905 (2007).
[19] T. N. Krauss, E. Barrena, D. G. de Oteyza, X. N. Zhang, J. Major, V. Dehm, F. Würthner, H. Dosch, “ X-ray/Atomic Force Microscopy Study of the Temperature- Dependent Multilayer Structure of PTCDI-C8 Films on SiO2”, J. Phys. Chem. C 113, pp 4502–4506 (2009).
[20] 陳儒賢,“不同介電材料之表面能對pentacene複晶薄膜所產生之應力的研究”,國立成功大學碩士論文 (2006).