簡易檢索 / 詳目顯示

研究生: 楊程吉
Yang, Cheng-Chi
論文名稱: 反式有機太陽能電池之光電特性研究
Studies of Photovoltaic Characteristics of Inverted Organic Solar Cells
指導教授: 鄭弘隆
Cheng, Horng-Long
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 86
中文關鍵詞: 有機太陽能電池塊材異質接面結構反式結構元件電荷萃取層
外文關鍵詞: Organic solar cell, Bulk-heterojunction, Inverted-type configuration, Charge extraction layer
相關次數: 點閱:163下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文使用聚乙烯亞胺(polyethyleneimine簡稱b-PEI) 做為反式有機太陽能電池之電子萃取層,研究b-PEI的製程參數對太陽能電池光伏特性的影響,並研究元件的操作穩定性,最後,則與傳統順式元件比較之,傳統順式元件一般使用poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT)為電荷萃取層。電池元件的主動層材料選用高分子聚3-已基噻吩[Poly(3-hexylthiophene-2,5-diyl),P3HT]為電子施體與[6,6]-苯基-C61-丁酸甲酯 [(6,6)-phenyl C61-butyric acid methyl ester]為電子受體。本論文利用X光繞射光譜、原子力顯微鏡、紫外-可見光吸收光譜與拉曼光譜,研究主動層薄膜在不同製程參數的b-PEI層的微結構變化,並探討其與元件光伏特性的關聯性。

      實驗結果顯示b-PEI的製程參數明顯影響反式有機太陽能電池的光伏特性,當使用甲醇為溶劑和180 oC的成膜溫度製作b-PEI 層,再將元件在150 oC進行熱退火處理,元件之光電轉換效率可達3.21%,優於傳統製程製作的順式有機太陽能電池(效率為2.46%)。結構分析發現b-PEI薄膜的製程參數會影響到後續主動層的微結構,在最佳製程參數的b-PEI薄膜上,P3HT有較佳的縱向結晶性與較短的共軛鏈長,且表面有較多突出區,有利電荷進行縱向傳輸,因此元件有較高的短路電流與較佳的光電轉換效率,優於使用PEDOT:PSS電荷萃取層之傳統順式元件。我們進一步發現使用b-PEI電子萃取層的反式元件的壽命遠優於傳統順式元件。

    This thesis investigated the photovoltaic properties of poly(3-hexylthio -phene-2,5-diyl) (P3HT, electron donor):(6,6)-phenyl C61-butyric acid methyl ester (PCBM, electron acceptor)-based inverted-type bulk-heterojunction organic solar cells (BHJ OSCs) using polyethyleneimine (b-PEI) as the electron extraction layer. The effects of fabrication conditions of the b-PEI layer on the photovoltaic parameters and stability of the inverted-type BHJ OSCs were studied and then compared to the conventional P3HT:PCBM -based normal-type BHJ OSCs with poly(3,4-ethylenedioxythiophene):poly (styrene sulfonate) (PEDOT:PSS) as a charge extraction layer. We studied the correlation between the morphology of the photo-active layer and the photovoltaic properties of the OSCs in terms of x-ray diffraction (XRD), atomic force microscopy, absorption spectroscopy, and Raman spectroscopy.

    The results revealed that the fabrication conditions of b-PEI layer have significant effects on the photovoltaic properties of the inverted-type BHJ OSCs. A power conversion efficiency (PSC) up to 3.21% of the inverted-type BHJ OSCs was obtained when the b-PEI layer was prepared from methanol solution and baked at 180 oC, and then post-annealed at 150 oC. The photovoltaic performance was superior to conventional normal-type P3HT:PCBM-based BHJ-OSCs (PSC of 2.46%). Structural analysis results indicated that the b-PEI layer conditions have large effects on the structural properties of the P3HT:PCBM photo-active layer. With the optimized fabrication conditions of the b-PEI layer, we observed that the P3HT component in the photo-active layer exhibit a better crystallization along the a-axis and shorter effective conjugation length, thus benefiting charge transport to the electrode. The resulting inverted-type BHJ OSCs exhibit higher short-circuit current than that of the normal-type BHJ OSCs. Finally, we highlight that the inverted-type BHJ OSCs with the b-PEI layer exhibit improved operational stability compared to the conventional normal-type BHJ OSCs

    中文摘要 I Abstract III 致謝 V 目錄 VI 表目錄 IX 圖目錄 X 第一章、緒論 1 1-1前言 1 1-2太陽能電池發展簡介 2 1-3 有機太陽能電池發展歷史 5 1-4 研究動機 11 第二章、有機太陽能電池簡介與原理 15 2-1太陽光譜 15 2-2光電效應與光伏特效應 17 2-3有機太陽能電池之等效電路 19 2-4有機太陽能電池的基本參數 21 2-5影響太陽能電池效率之因素 23 第三章、元件製程與量測儀器原理 30 3-1實驗材料 30 3-2元件製作流程 32 3-2-1 主動層溶液配製 32 3-2-2 順式有機太陽能電池元件製程 32 3-2-3 反式有機太陽能電池元件製程 34 3-3實驗分析儀器 36 3-3-1 太陽光模擬器與IV量測系統 36 3-3-2紫外光-可見光吸收光譜儀 37 3-3-3 多功能X光薄膜繞射儀 37 3-3-4 原子力顯微鏡 38 3-3-5 拉曼光譜儀 39 第四章、反式有機太陽能電池之光伏特性研究及其與順式有機太陽能電池比較 44 4-1 不同b-PEI製程參數之反式有機太陽能電池元件光電特性 44 4-1-1 操作變因為溶劑 44 4-1-2 操作變因為重量百分比濃度 45 4-1-3 操作變因為薄膜的熱烤溫度 45 4-1-4 操作變因為元件之熱退火溫度 45 4-2主動層P3HT:PC61BM成膜於不同b-PEI薄膜之X光繞射光譜 47 4-3 順式與反式有機太陽能電池元件光電特性之比較 48 4-3-1 原子力顯微鏡影像分析 48 4-3-2 紫外-可見光光譜分析 49 4-3-3 拉曼光譜分析 50 4-4 順式與反式有機太陽能電池之元件壽命比較 52 第五章、總結與未來展望 79 5-1 總結 79 5-2 未來展望 81 參考文獻 82

    [1]小長井誠、瀨川浩司、桑野幸德、一木修、田路和幸,Eric Weber,“太陽能發電”,Newton量子科學雜誌,第26號,第18-75頁, 2009。

    [2]www.nrel.gov/ncpv/images/efficiency_chart.jpg

    [3]翁谷松、劉乃元、彭成鑑、洪健龍,“太陽光電材料產業現況與發展機會”,工業材料雜誌,第255期,第124-135頁,2008。

    [4]M. A. Green, K. Emery, Y. Hishikawa , W. Warta, “Solar cell efficiency tables (version 34)”, Prog. Photovolt: Res. Appl., vol. 17, 320 (2009).

    [5]K. Ramanathan, M. A. Contreras, C. L. Perkins, S. Asher, F.S. Hasoon, J. Keana, D.Young, M. Romero, W. Metzger, R. Noufi, J. Ward, A. Duda,“Properties of 19.2% Efficiency ZnO/CdS/ CuInGaSe2 Thin-film Solar Cell”, Prog. Photovolt.: Res. Appl., 11, 225 (2003).

    [6]H. Kallmans, M. Pope, “Photovoltaic effect in organic crystals”, J. Chem. Phys., 30, 585 (1958).

    [7]A. K. Ghosh, T. Feng, ”Merocynanine organic solar cells”, J. Appl, Phys., 49, 5982 (1978).

    [8]C. W. Tang, “Two‐layer organic photovoltaic cell”, Appl. Phy. Lett.,48, 183 (1986).

    [9]G. Yu, C. Zhang, A. J. Heeger, “Dual‐function semiconducting polymer devices: Light‐emitting and photodetecting diodes”, Appl. Phys. Lett., 64, 1540 (1994).

    [10]J. J. M. Halls, K. Pichler, R. H. Friend, S. C. Moratti, A. B. Holmes, “Exciton diffusion and dissociation in a poly(p‐phenylenevinylene) /C60heterojunction photovoltaic cell”, Appl. Phys. Lett., 68, 3120 (1996).

    [11]N. S. Sariciftci, L. Smilowitz, A. J. Heeger, F. Wudl, “Photoinduced Electron Transfer from a Conducting Polymer to Buckminster–fullerene”, Science, 258, 1474 (1992).

    [12]N. S. Sariciftci, D. Braun, C. Zhang, V. I. Srdanov, A. J. Heeger, G. Stucky, F. Wudl, “Semiconducting polymer‐buckminsterfullerene hetero -junctions : Diodes, photodiodes, and photovoltaic cells”, Appl. Phys. Lett., 62, 585 (1993).

    [13]G. Yu, J. Gao, J. Hummelen, F. Wudl, A. J. Heeger, “Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions”, Science, 270, 1789 (1995).

    [14]S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, F. Padinger, T. Fromherz, J. C. Hummelen, “2.5% efficient organic plastic solar cells”, Appl. Phys. Lett., 78, 841 (2001).

    [15]F. Padinger, R. S. Rittberger, N. S. Sariciftci, “Effects of Postpro-duction Treatment on Plastic Solar Cells”, Adv. Funct.Mater., 13, 85 (2003).

    [16]G. Li, V. Shortriya, Y. Yao, Y. J. Yang, “Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene)”, Appl. Phys., 98, 043704 (2005).

    [17]G. Li, V. Shortriya, J. Huang, T. Moriarty, K. Emery, Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends”, Nat. Mater., 4, 864 (2005).

    [18]W. Ma, C. Yang, X. Gong, K. Lee, A. J. Heeger, “Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology”, Adv. Funct. Mater., 15, 1617 (2005).

    [19]M. C. Scharber, D. Muhlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, C. J. Brabec, “Design Rules for Donors in Bulk-Hetero -junction Solar Cells—Towards 10 % Energy-Conversion Efficiency” Adv. Mater, 18, 789 (2006).

    [20]J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T. Q. Nguyen, M. Dante, A. J. Heeger, “Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing”, Science, 317, 222 (2007).

    [21]N. Blouin, A. Michaud, M. Leclerc, ”A Low-Bandgap Poly (2,7-Carbazole) Derivative for Use in High-Performance Solar Cells”, Adv. Mater., 19, 2295 (2007).

    [22]S. Wakim, S. Beaupre, N. Blouin, B. R. Aich, S. Rodman, R. Gaudiana, Y. Tao, M. Leclerc, “High efficient organic solar cells based on a poly(2,7-carbazole) derivative”, J. Mater. Chem., 19, 5351 (2009).

    [23]S. H. Park, A. Roy, S. Bezupre, S. Cho, N. Coates, J. S. Moon, D.Moses, M. Leclerc, K. Lee, A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%”, Nat. Photo., 3, 297 (2009).

    [24]S. Cho, J. H. Seo, S. H. Park, S. Beaupre, M. Leclerc, A. J. Heeger, “A thermally stable semiconducting polymer”, Adv. Mater., 22, 1253 (2010).

    [25]Y. Sun, J. Y. Seo. C. J. Takacs, J. Seifter, A. J. Heeger, “Inverted polymer solar cells integrated with a low-temperature-annealed sol-gel-derived zno film as an electron transport layer”, Adv. Mater., 23, 1679 (2011).

    [26]T. Y. Chu, S. Alem, S. W. Tsang, S. C. Tse, S. Wakim, J. Lu, G. Dennler, D. Waller, R. Gaudiana, Y. Tao, “Morphology control in polycarbazole based bulk heterojunction solar cells and its impact on device performance”, Appl. Phys. Lett., 98, 253301 (2011).

    [27]J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K.Emery, C.-C. Chen, J. Gao, G. Li and Y. Yang, “A polymer tandem solar cell with 10.6% power conversion efficiency”, Nat. Com., 4, 1446 (2013).

    [28]http://www.newport.com/Introduction-to-Solar-Radiation/411919/1033/content.aspx

    [29]戴寶通、鄭晁忠,“太陽能電池技術手冊”,台灣電子材料與元件協會發行出版,台灣,2008。

    [30]M. A. Green, “Solar cells: Operating principles, technology, and system applications”, Prentice Hall, Englewood Cliffs, NJ, page 87, (1981).

    [31]M. P Thekackra, “The Solar Cell Constant and Solar Spectrum Measurement from a Research Aircraft”, NASA Technical Report No. R-351, (1970).

    [32]蔡進譯, “超高效率陽電池”, 物理雙月刊, 第廿七卷五期, 第701頁, 2005.

    [33]M. A. Green, “Limits on the open-circuit voltage and efficiency of silicon solar cells imposed by intrinsic Auger process”, IEEE T. Electron Dev., 31, 671 (1984).

    [34]Hongkyu Kang, Soonil Hong, Jongjin Lee, and Kwanghee Lee, “Electrostatically Self-Assembled Nonconjugated Polyelectrolytes as an Ideal Interfacial Layer for Inverted Polymer Solar Cells”, Mater. Views, 24, 3005 (2012).

    [35]T. Erb, U. Zhokhavets, G. Gobsch, S. Raleva, B. Stuhn, P. Schilinsky, C. Waldauf, C. J. Brabec, “Correlation Between Structural and Optical Properties of Composite Polymer/Fullerene Films for Organic Solar Cells” Adv. Funct. Mater., 15, 1193 (2005).

    [36]M. Kakudo N. Kasai, “X-Ray Diffraction by Macromolecules”, Springer-Verlag, Berlin Heidelberg, page 504, 2005.

    [37]F. C. Wu, Y. C. Huang, H. L. Cheng, W. Y. Chou, F. C. Tang, “Importance of Disordered Polymer Segments to Microstructure- Dependent Photovoltaic Properties of PolymerFullerene Bulk Heterojunction Solar Cells”, J. Phys. Chem.,, 115, 15057 (2011).

    [38]M. Baibarac, M. Lapkowski, A. Pron, S. Lefrant, I. Baltog, “SERS Spectra of Poly(3-Hexylthiophene) in Oxidized and Unoxidized States”, J. Raman Spectrosc., 29, 825 (1998).

    [39]J. J. Yun, J. Peet, N. S. Cho, G. C. Bazan, S. J. Lee, M. Moskovits, “Insight into the Raman shifts and optical absorption changes upon annealingpolymer/fullerene solar cells”, Appl. Phys. Lett., 92, 251912 (2008).

    [40]A. Sakamoto, Y. FurUkawa, Mitsuo Tasum, “Infrared and Raman Studies of Poly(p-pheny1enevinylene) and Its Model Compounds”, J. Phys. Chem., 96, 1490 (1992).

    [41]H. L. Cheng, J. W. Lin, a F. C. Wu, W. R. She, W. Y. Chou, W. J. Shihb, H. S. Sheu, “Reformation of conjugated polymer chains toward maximum effective conjugation lengths by quasi-swelling and recrystallization approach”, Soft Matter.,7 , 351 (2011).

    下載圖示 校內:2019-09-05公開
    校外:2019-09-05公開
    QR CODE