| 研究生: |
楊程吉 Yang, Cheng-Chi |
|---|---|
| 論文名稱: |
反式有機太陽能電池之光電特性研究 Studies of Photovoltaic Characteristics of Inverted Organic Solar Cells |
| 指導教授: |
鄭弘隆
Cheng, Horng-Long |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 有機太陽能電池 、塊材異質接面結構 、反式結構元件 、電荷萃取層 |
| 外文關鍵詞: | Organic solar cell, Bulk-heterojunction, Inverted-type configuration, Charge extraction layer |
| 相關次數: | 點閱:163 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文使用聚乙烯亞胺(polyethyleneimine簡稱b-PEI) 做為反式有機太陽能電池之電子萃取層,研究b-PEI的製程參數對太陽能電池光伏特性的影響,並研究元件的操作穩定性,最後,則與傳統順式元件比較之,傳統順式元件一般使用poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT)為電荷萃取層。電池元件的主動層材料選用高分子聚3-已基噻吩[Poly(3-hexylthiophene-2,5-diyl),P3HT]為電子施體與[6,6]-苯基-C61-丁酸甲酯 [(6,6)-phenyl C61-butyric acid methyl ester]為電子受體。本論文利用X光繞射光譜、原子力顯微鏡、紫外-可見光吸收光譜與拉曼光譜,研究主動層薄膜在不同製程參數的b-PEI層的微結構變化,並探討其與元件光伏特性的關聯性。
實驗結果顯示b-PEI的製程參數明顯影響反式有機太陽能電池的光伏特性,當使用甲醇為溶劑和180 oC的成膜溫度製作b-PEI 層,再將元件在150 oC進行熱退火處理,元件之光電轉換效率可達3.21%,優於傳統製程製作的順式有機太陽能電池(效率為2.46%)。結構分析發現b-PEI薄膜的製程參數會影響到後續主動層的微結構,在最佳製程參數的b-PEI薄膜上,P3HT有較佳的縱向結晶性與較短的共軛鏈長,且表面有較多突出區,有利電荷進行縱向傳輸,因此元件有較高的短路電流與較佳的光電轉換效率,優於使用PEDOT:PSS電荷萃取層之傳統順式元件。我們進一步發現使用b-PEI電子萃取層的反式元件的壽命遠優於傳統順式元件。
This thesis investigated the photovoltaic properties of poly(3-hexylthio -phene-2,5-diyl) (P3HT, electron donor):(6,6)-phenyl C61-butyric acid methyl ester (PCBM, electron acceptor)-based inverted-type bulk-heterojunction organic solar cells (BHJ OSCs) using polyethyleneimine (b-PEI) as the electron extraction layer. The effects of fabrication conditions of the b-PEI layer on the photovoltaic parameters and stability of the inverted-type BHJ OSCs were studied and then compared to the conventional P3HT:PCBM -based normal-type BHJ OSCs with poly(3,4-ethylenedioxythiophene):poly (styrene sulfonate) (PEDOT:PSS) as a charge extraction layer. We studied the correlation between the morphology of the photo-active layer and the photovoltaic properties of the OSCs in terms of x-ray diffraction (XRD), atomic force microscopy, absorption spectroscopy, and Raman spectroscopy.
The results revealed that the fabrication conditions of b-PEI layer have significant effects on the photovoltaic properties of the inverted-type BHJ OSCs. A power conversion efficiency (PSC) up to 3.21% of the inverted-type BHJ OSCs was obtained when the b-PEI layer was prepared from methanol solution and baked at 180 oC, and then post-annealed at 150 oC. The photovoltaic performance was superior to conventional normal-type P3HT:PCBM-based BHJ-OSCs (PSC of 2.46%). Structural analysis results indicated that the b-PEI layer conditions have large effects on the structural properties of the P3HT:PCBM photo-active layer. With the optimized fabrication conditions of the b-PEI layer, we observed that the P3HT component in the photo-active layer exhibit a better crystallization along the a-axis and shorter effective conjugation length, thus benefiting charge transport to the electrode. The resulting inverted-type BHJ OSCs exhibit higher short-circuit current than that of the normal-type BHJ OSCs. Finally, we highlight that the inverted-type BHJ OSCs with the b-PEI layer exhibit improved operational stability compared to the conventional normal-type BHJ OSCs
[1]小長井誠、瀨川浩司、桑野幸德、一木修、田路和幸,Eric Weber,“太陽能發電”,Newton量子科學雜誌,第26號,第18-75頁, 2009。
[2]www.nrel.gov/ncpv/images/efficiency_chart.jpg
[3]翁谷松、劉乃元、彭成鑑、洪健龍,“太陽光電材料產業現況與發展機會”,工業材料雜誌,第255期,第124-135頁,2008。
[4]M. A. Green, K. Emery, Y. Hishikawa , W. Warta, “Solar cell efficiency tables (version 34)”, Prog. Photovolt: Res. Appl., vol. 17, 320 (2009).
[5]K. Ramanathan, M. A. Contreras, C. L. Perkins, S. Asher, F.S. Hasoon, J. Keana, D.Young, M. Romero, W. Metzger, R. Noufi, J. Ward, A. Duda,“Properties of 19.2% Efficiency ZnO/CdS/ CuInGaSe2 Thin-film Solar Cell”, Prog. Photovolt.: Res. Appl., 11, 225 (2003).
[6]H. Kallmans, M. Pope, “Photovoltaic effect in organic crystals”, J. Chem. Phys., 30, 585 (1958).
[7]A. K. Ghosh, T. Feng, ”Merocynanine organic solar cells”, J. Appl, Phys., 49, 5982 (1978).
[8]C. W. Tang, “Two‐layer organic photovoltaic cell”, Appl. Phy. Lett.,48, 183 (1986).
[9]G. Yu, C. Zhang, A. J. Heeger, “Dual‐function semiconducting polymer devices: Light‐emitting and photodetecting diodes”, Appl. Phys. Lett., 64, 1540 (1994).
[10]J. J. M. Halls, K. Pichler, R. H. Friend, S. C. Moratti, A. B. Holmes, “Exciton diffusion and dissociation in a poly(p‐phenylenevinylene) /C60heterojunction photovoltaic cell”, Appl. Phys. Lett., 68, 3120 (1996).
[11]N. S. Sariciftci, L. Smilowitz, A. J. Heeger, F. Wudl, “Photoinduced Electron Transfer from a Conducting Polymer to Buckminster–fullerene”, Science, 258, 1474 (1992).
[12]N. S. Sariciftci, D. Braun, C. Zhang, V. I. Srdanov, A. J. Heeger, G. Stucky, F. Wudl, “Semiconducting polymer‐buckminsterfullerene hetero -junctions : Diodes, photodiodes, and photovoltaic cells”, Appl. Phys. Lett., 62, 585 (1993).
[13]G. Yu, J. Gao, J. Hummelen, F. Wudl, A. J. Heeger, “Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions”, Science, 270, 1789 (1995).
[14]S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, F. Padinger, T. Fromherz, J. C. Hummelen, “2.5% efficient organic plastic solar cells”, Appl. Phys. Lett., 78, 841 (2001).
[15]F. Padinger, R. S. Rittberger, N. S. Sariciftci, “Effects of Postpro-duction Treatment on Plastic Solar Cells”, Adv. Funct.Mater., 13, 85 (2003).
[16]G. Li, V. Shortriya, Y. Yao, Y. J. Yang, “Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene)”, Appl. Phys., 98, 043704 (2005).
[17]G. Li, V. Shortriya, J. Huang, T. Moriarty, K. Emery, Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends”, Nat. Mater., 4, 864 (2005).
[18]W. Ma, C. Yang, X. Gong, K. Lee, A. J. Heeger, “Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology”, Adv. Funct. Mater., 15, 1617 (2005).
[19]M. C. Scharber, D. Muhlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, C. J. Brabec, “Design Rules for Donors in Bulk-Hetero -junction Solar Cells—Towards 10 % Energy-Conversion Efficiency” Adv. Mater, 18, 789 (2006).
[20]J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T. Q. Nguyen, M. Dante, A. J. Heeger, “Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing”, Science, 317, 222 (2007).
[21]N. Blouin, A. Michaud, M. Leclerc, ”A Low-Bandgap Poly (2,7-Carbazole) Derivative for Use in High-Performance Solar Cells”, Adv. Mater., 19, 2295 (2007).
[22]S. Wakim, S. Beaupre, N. Blouin, B. R. Aich, S. Rodman, R. Gaudiana, Y. Tao, M. Leclerc, “High efficient organic solar cells based on a poly(2,7-carbazole) derivative”, J. Mater. Chem., 19, 5351 (2009).
[23]S. H. Park, A. Roy, S. Bezupre, S. Cho, N. Coates, J. S. Moon, D.Moses, M. Leclerc, K. Lee, A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%”, Nat. Photo., 3, 297 (2009).
[24]S. Cho, J. H. Seo, S. H. Park, S. Beaupre, M. Leclerc, A. J. Heeger, “A thermally stable semiconducting polymer”, Adv. Mater., 22, 1253 (2010).
[25]Y. Sun, J. Y. Seo. C. J. Takacs, J. Seifter, A. J. Heeger, “Inverted polymer solar cells integrated with a low-temperature-annealed sol-gel-derived zno film as an electron transport layer”, Adv. Mater., 23, 1679 (2011).
[26]T. Y. Chu, S. Alem, S. W. Tsang, S. C. Tse, S. Wakim, J. Lu, G. Dennler, D. Waller, R. Gaudiana, Y. Tao, “Morphology control in polycarbazole based bulk heterojunction solar cells and its impact on device performance”, Appl. Phys. Lett., 98, 253301 (2011).
[27]J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K.Emery, C.-C. Chen, J. Gao, G. Li and Y. Yang, “A polymer tandem solar cell with 10.6% power conversion efficiency”, Nat. Com., 4, 1446 (2013).
[28]http://www.newport.com/Introduction-to-Solar-Radiation/411919/1033/content.aspx
[29]戴寶通、鄭晁忠,“太陽能電池技術手冊”,台灣電子材料與元件協會發行出版,台灣,2008。
[30]M. A. Green, “Solar cells: Operating principles, technology, and system applications”, Prentice Hall, Englewood Cliffs, NJ, page 87, (1981).
[31]M. P Thekackra, “The Solar Cell Constant and Solar Spectrum Measurement from a Research Aircraft”, NASA Technical Report No. R-351, (1970).
[32]蔡進譯, “超高效率陽電池”, 物理雙月刊, 第廿七卷五期, 第701頁, 2005.
[33]M. A. Green, “Limits on the open-circuit voltage and efficiency of silicon solar cells imposed by intrinsic Auger process”, IEEE T. Electron Dev., 31, 671 (1984).
[34]Hongkyu Kang, Soonil Hong, Jongjin Lee, and Kwanghee Lee, “Electrostatically Self-Assembled Nonconjugated Polyelectrolytes as an Ideal Interfacial Layer for Inverted Polymer Solar Cells”, Mater. Views, 24, 3005 (2012).
[35]T. Erb, U. Zhokhavets, G. Gobsch, S. Raleva, B. Stuhn, P. Schilinsky, C. Waldauf, C. J. Brabec, “Correlation Between Structural and Optical Properties of Composite Polymer/Fullerene Films for Organic Solar Cells” Adv. Funct. Mater., 15, 1193 (2005).
[36]M. Kakudo N. Kasai, “X-Ray Diffraction by Macromolecules”, Springer-Verlag, Berlin Heidelberg, page 504, 2005.
[37]F. C. Wu, Y. C. Huang, H. L. Cheng, W. Y. Chou, F. C. Tang, “Importance of Disordered Polymer Segments to Microstructure- Dependent Photovoltaic Properties of PolymerFullerene Bulk Heterojunction Solar Cells”, J. Phys. Chem.,, 115, 15057 (2011).
[38]M. Baibarac, M. Lapkowski, A. Pron, S. Lefrant, I. Baltog, “SERS Spectra of Poly(3-Hexylthiophene) in Oxidized and Unoxidized States”, J. Raman Spectrosc., 29, 825 (1998).
[39]J. J. Yun, J. Peet, N. S. Cho, G. C. Bazan, S. J. Lee, M. Moskovits, “Insight into the Raman shifts and optical absorption changes upon annealingpolymer/fullerene solar cells”, Appl. Phys. Lett., 92, 251912 (2008).
[40]A. Sakamoto, Y. FurUkawa, Mitsuo Tasum, “Infrared and Raman Studies of Poly(p-pheny1enevinylene) and Its Model Compounds”, J. Phys. Chem., 96, 1490 (1992).
[41]H. L. Cheng, J. W. Lin, a F. C. Wu, W. R. She, W. Y. Chou, W. J. Shihb, H. S. Sheu, “Reformation of conjugated polymer chains toward maximum effective conjugation lengths by quasi-swelling and recrystallization approach”, Soft Matter.,7 , 351 (2011).