簡易檢索 / 詳目顯示

研究生: 曾文威
Tzeng, Wun-Wei
論文名稱: 利用mitoTALEN技術造成菸草絨氈層細胞的粒線體Nad1基因之雙股斷裂導致雄不稔性
mitoTALEN-mediated double-strand break of mitochondrial Nad1 gene in the tapetal cells of tobacco might cause cytoplasmic male sterility
指導教授: 張清俊
Chang, Ching-Chun
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生物科技與產業科學系
Department of Biotechnology and Bioindustry Sciences
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 109
中文關鍵詞: 粒線體細胞質雄不稔Nad1基因TALEN
外文關鍵詞: mitochondria, mitochondrial DNA, CMS
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 植物的雄不稔常存在於自然界當中,其表現型通常為孢子發生時之異常,而無法產生花粉、產生花粉卻失去功能或花器結構改變等。而雄不稔性可大致分為可遺傳性和不具遺傳性。而遺傳性的雄不稔可依據雄不稔基因位置,將其分類為細胞核基因調控、細胞質基因調控或兩者互相調控。NADH脫氫酶是粒線體電子傳遞鏈中的第一個複合體 ( respiratory complex 1 ) 在植物是由至少49個蛋白質單元組成,其中有9個基因包含Nad1為粒線體編碼基因。
    近年,TALEN基因編輯技術被用於植物的粒線體基因進行編輯。本研究使用TALEN技術編輯粒線體Nad1基因,藉由構築一個細胞核TALEN基因表現載體pTA29-Talen,再由農桿菌送至菸草的細胞核表現,再經由粒線體導引訊號 (Tm)引導至粒線體胞質內,進而辨識並編輯Nad1基因。藉由kanamycin篩選得到轉殖pTA29-TALEN至少43個菸草轉殖品系。
    初步以解剖顯微鏡進行觀察,發現04號轉殖品系之花粉粒數量明顯低於未轉殖菸草植株。進一步使用光學顯微鏡觀測經I2-KI和TTC染色的花粉,評估各品系之花粉粒染色程度,依照染色深淺程度來判別各品系之花粉活力程度。結果顯示,在01、02、31轉殖品系並無發現花粉活力低下的表現,但在04轉殖品系發現花粉活力遠低於未轉殖菸草之花粉活力,推測大部分花粉已失去活性。此外,於花粉萌發實驗中比較各品系花粉管之生長情形,結果顯示01、02、31轉殖品系之花粉管長度和未轉殖菸草長度相似,但在04轉殖品系之花粉管長度遠低於未轉殖菸草長度,顯示其萌發能力亦受影響。綜合以上結果,推測 04 號轉殖品系中絨氈層細胞粒線體 Nad1 基因被 mitoTALEN 編輯後,導致線粒體功能異常進而引發細胞質雄性不稔(cytoplasmic male sterility, CMS)之表型。

    Plant mitochondria play an important role in cellular biogenesis, such as respiration. The organelle and their genomes in angiosperms are typically inherited from maternal ancestors. Mitochondrial genomes contain around 57 genes, mainly encoding the protein subunits associated with translation and respiration processes. The mitochondrial NADH dehydrogenase complex (or respiratory complex I) consists of at least 49 protein subunits. Among them, nine subunits, including Nad1, are encoded by mitochondrial DNA (mtDNA) in plants. Currently, technologies for directly manipulating the mtDNA of land plants are unavailable. Alternatively, transcription activator-like effector (TALE) based technologies that could introduce changes into the mtDNA of land plants via Agrobacteria-mediated nuclear transformation have been recently explored in breeding new traits for both basic and applied research in agriculture. Cytoplasmic male sterility (CMS), arising from nuclear and mitochondrial genome incompatibility, is a factor contributing to the infertility of certain crops due to the failure of pollen germination or dehiscence in the anther. The CMS traits could facilitate the production of hybrid plants, which have great potential in breeding advantageous traits referred to as hybrid vigor in crops. In this study, mitochondria-targeted transcription activator-like effector nuclease (mitoTALEN) was applied to edit the Nad1 gene in tapetal cells of tobacco. The functional loss of tapetal cells is expected to cause the CMS phenotype. Previously, a nuclear expression vector in which TALENs driven by a tapetal cell-specific promoter TA29 was constructed and used to transform tobacco plants via the Agrobacterium-mediated method. Several transgenic events with the integration of TALEN gene into the nuclear genome were obtained. The abnormal development of anther, the significant reduction of pollen viability and germination, and the decrease in seed set were observed in at least one transgenic event, which suggested mitoTALEN-mediated disruption of the mitochondrial Nad1 gene in tapetal cells might cause CMS in tobacco plants.

    中文摘要I 英文摘要III 誌謝VII 目錄VIII 表目錄XI 圖目錄XII 附圖目錄XIII 縮寫表XIV 一、 研究背景 1-1 基因轉殖作物1 1-2 基因轉殖技術發展及應用1 1-3 TALEN 技術之發展與應用7 1-4 粒線體的簡介11 1-5 粒線體NADH : ubiquinone oxidoreductase(Complex I)的組成12 1-6 粒線體Complex I缺失對植物之影響13 1-7 絨氈層 ( Tapetum ) 14 1-8 絨氈層與雄性可育的控制14 1-9 細胞質雄不稔(Cytoplasmic male sterility, CMS) 15 1-10 研究目的17 二、材料與方法 2-1 構築表現載體pTA29-Talen18 2-2 植物基因轉殖載體之構築19 2-3 構築表現載體所使用之方法20 2-4 菸草基因轉殖22 2-5 萃取植物DNA27 2-6 TTC染色法28 2-7 I2-KI染色法29 三、結果 3-1 構築pTA29-Talen表現載體30 3-2 獲得表現TALEN之菸草基因轉殖品系31 3-3 轉殖植株表現型之觀察31 四、討論 4-1 選用 TALEN 作為編輯粒線體 nad1基因 之工具的因素35 4-2 TA29啟動子誘導之雄不稔和天然性雄不稔之比較與探討36 4-3 轉殖植株的外源基因偵測之探討37 4-4 轉殖植株子代之分離率偏離的探討38 4-5轉殖pTA29-Talen之菸草品系的花粉活性以及花粉粒型態之探 討38 4-6轉殖pTA29-Talen之菸草品系的果莢和種子數量之探 討40 4-7轉殖pTA29-Talen之菸草品系的花粉粒發芽和花粉管生長型態之探 討40 4-8I2-KI、TTC對於菸草花粉活力檢測之討論41 4-9 mitoTALEN 技術應用於編輯粒線體基因43 4-10總結44 參考文獻46 圖表54 附圖81

    曾彥皓,分析由重組TALEN 蛋白介導雙股斷裂的煙草線粒體 DNA 之編輯狀態,國立成功大學生物科技研究所碩士論文,2025。

    陳詩璇,利用誘導表現轉錄似活化因子蛋白核酸酶(TALEN)來改變菸草葉綠體 DNA,國立成功大學生物科技研究所碩士論文,2018。

    吳佩諭,利用似轉錄激活因子蛋白和酸梅(TALEN)技術對粒線體nad1基因進行編輯,2017。

    蘇源霖,轉殖似轉錄激活因子蛋白核酸酶(TALEN)來改變菸草葉綠體 DNA 序列之研究,國立成功大學生物科技研究所碩士論文,2016。

    陳怡寬,利用細胞穿透胜肽運送DNA進入葉綠體,國立成功大學生物科技研究所碩士論文,2014。

    涂晉敏,應用創傷弧菌蘭螢光蛋白於植物科學的研究,國立成功大學生物科技研究所碩士論文,2014。

    Adam-Vizi, V. and Chinopoulos, C. Bioenergetics and the formation of mitochondrial reactive oxygen species. Trends in Pharmacological Sciences 27, 639-645, 2006.

    Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K. and Walter, P. Molecular Biology of the Cell (4th ed.). New York: Garland Science, 2002.

    Arimura, S. and Kazama, T. Mitochondrial genome engineering in plants: recent advances and challenges. Nature Plants 9, 2023.

    Asai, T., Bates, B. and Kogoma, T. DNA replication triggered by double-stranded breaks in E. coli: dependence on homologous recombination functions. Cell 78, 1051-1061, 1994.

    Bacman, S. R., Williams, S. L., Pinto, M. and Moraes, C. T. The use of mitochondria-targeted endonucleases to manipulate mtDNA. Methods in Enzymology 547, 373-397, 2014.

    Barakate, A., Keir, E., Oakey, H. and Halpin, C. Stimulation of homologous recombination in plants expressing heterologous recombinases. BMC Plant Biology 20, 20-30, 2020.

    Bederson, J. B., Pitts, L. H., Germano, S. M., Nishimura, M. C., Davis, R. L. and Bartkowski, H. M. Evaluation of 2,3,5-triphenyltetrazolium chloride staining to delineate infarcted areas after permanent middle cerebral artery occlusion in rats. Stroke 17, 1304-1308, 1986.

    Boavida, L. C. and McCormick, S. Temperature as a determinant factor for increased and reproducible in vitro pollen germination in Arabidopsis thaliana. The Plant Journal 52, 570-582, 2007.

    Boch, J. TALEs of genome targeting. Nature Biotechnology 29, 135-136, 2011.

    Bock, R. Engineering plastid genomes: methods, tools, and applications in basic research and biotechnology. Annual Review of Plant Biology 66, 211-241, 2015.

    Brandt, U. Energy converting NADH:quinone oxidoreductase (complex I). Annual Review of Biochemistry 75, 69-92, 2006.

    Brewbaker, J. L. and Kwack, B. H. The essential role of calcium ion in pollen germination and pollen tube growth. American Journal of Botany 50, 859-865, 1963.

    Caspar, T., Lin, T. P., Kakefuda, G., Benbow, L., Preiss, J. and Somerville, C. Mutants of Arabidopsis with altered regulation of starch degradation. Plant Physiology 95, 1181-1188, 1991.

    Cermak, T., Doyle, E. L., Christian, M., Wang, L., Zhang, Y. and Voytas, D. F. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Research 39, e82, 2011.

    Char, S. N., Neelakandan, A. K., Nahampun, H., Frame, B., Main, M., Spalding, M. H. and Wang, K. An Agrobacterium-delivered CRISPR/Cas9 system for high-frequency targeted mutagenesis in maize. Plant Biotechnology Journal 13, 1007-1015, 2015.

    Chen, L. and Liu, Y. G. Male sterility and fertility restoration in crops. Annual Review of Plant Biology 65, 579-606, 2014.
    Chen, P. J., Senthilkumar, R., Jane, W. N., He, Y., Tian, Z. and Yeh, K. W. Transplastomic Nicotiana benthamiana plants expressing multiple defence genes encoding protease inhibitors and chitinase display broad-spectrum resistance against insects, pathogens and abiotic stresses. Plant Biotechnology Journal 12, 503-515, 2014.

    Christian, M. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186, 757-761, 2010.

    Clasen, B. M., Stoddard, T. J., Luo, S., Demorest, Z. L., Li, J., Cedrone, F. and Voytas, D. F. Improving cold storage and processing traits in potato through targeted gene knockout. Plant Biotechnology Journal 14, 169-176, 2016.

    Dewey, R. E., Selote, D., Griffin, H. C., Dickey, A. N., Jantz, D., Smith, J. J. and Smith, W. A. Cytoplasmic male sterility and abortive seed traits generated through mitochondrial genome editing coupled with allotopic expression of atp1 in tobacco. Frontiers in Plant Science 14, 1253640, 2023.

    Distelfeld, A., Pearce, S. P., Avni, R., Scherer, B., Uauy, C. and Dubcovsky, J. Divergent functions of orthologous NAC transcription factors in wheat and rice. Plant Molecular Biology 78, 515-524, 2012.

    Falcon De Longevialle, A., Meyer, E., Andres, C., Taylor, N., Lurin, C., Millar, H. and Small, I. The pentatricopeptide repeat gene OTP43 is required for trans-splicing of the mitochondrial nad1 intron 1 in Arabidopsis thaliana. The Plant Cell 19, 3256-3265, 2007.

    Fan, L. M., Wang, Y. F., Wang, H. and Wu, W. H. In vitro Arabidopsis pollen germination and characterization of the inward potassium currents in Arabidopsis pollen grain protoplasts. Journal of Experimental Botany 52, 1603-1614, 2001.

    Fraley, R. T., Rogers, S. G., Horsch, R. B., Sanders, P. R., Flick, J. S., Adams, S. P., Bittner, M. L., Brand, L. A., Fink, C. L. and Fry, J. S. Expression of bacterial genes in plant cells. Proceedings of the National Academy of Sciences of the United States of America 80, 4803-4807, 1983.

    Fishbein, M. C., Meerbaum, S., Rit, J., Lando, U., Kanmatsuse, K., Mercier, J. C., Corday, E. and Ganz, W. Early phase acute myocardial infarct size quantification: validation of the triphenyl tetrazolium chloride tissue enzyme staining technique. American Heart Journal 101, 593-600, 1981.

    Gautam, R., Kumar, S., Singh, P. K. and Yadav, P. Male sterility in plants: an overview of advancements from natural CMS to genetically manipulated systems for hybrid seed production. Theoretical and Applied Genetics 136, 195-208, 2023.

    Gelvin, S. B. Agrobacterium-mediated plant transformation: the biology behind the “gene-jockeying” tool. Microbiology and Molecular Biology Reviews 67, 16-37, 2003.

    Gualberto, J. M. and Newton, K. J. Plant mitochondrial genomes: dynamics and mechanisms of mutation. Annual Review of Plant Biology 68, 225-252, 2017.

    Gray, M. W., Burger, G. and Lang, B. F. Mitochondrial evolution. Science 283, 1476-1481, 1999.

    Gutierres, S., Sabar, M., Lelandais, C., Chetrit, P., Diolez, P., Degand, H. and De Paepe, R. Lack of mitochondrial and nuclear-encoded subunits of complex I and alteration of the respiratory chain in Nicotiana sylvestris mitochondrial deletion mutants. Proceedings of the National Academy of Sciences of the United States of America 94, 3436-3441, 1997.

    Gupta, P. K. Cell Organelles. Meerut: Rastogi Publications, 2005.

    Haun, W., Coffman, A., Clasen, B. M., Demorest, Z. L., Lowy, A., Ray, E. and Zhang, F. Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family. Plant Biotechnology Journal 12, 934-940, 2014.

    Heazlewood, J. L., Howell, K. A., Whelan, J. and Millar, A. H. Mitochondrial complex I from Arabidopsis and rice: orthologs of mammalian and fungal components coupled with plant-specific subunits. Biochimica et Biophysica Acta 1604, 159-169, 2003.

    He, J. L., Zhang, W. L., Xu, H. and Zhou, H. Biological characteristics of flowers and examination of pollen viability at different developmental stages of Epimedium sagittatum (Sieb. et Zucc.) Maxim. Scientific Reports 14, 18530, 2024.

    Impe, D., Reitz, J., Köpnick, C., Rolletschek, H. and Börner, A. Assessment of pollen viability for wheat. Frontiers in Plant Science 10, 1588, 2020.

    Joung, J. K. and Sander, J. D. TALENs: a widely applicable technology for targeted genome editing. Nature Reviews Molecular Cell Biology 14, 49-55, 2013.

    Karpova, O. V. and Newton, K. J. A partially assembled complex I in NAD4-deficient mitochondria of maize. The Plant Journal 17, 511-521, 1999.

    Kazama, T., Okuno, M., Watari, Y. and Arimura, S. MitoTALEN-mediated genome editing reveals that orf312 is a male sterility-associated gene in rice. The Plant Journal 115, 2023.

    Kazama, T., Tamura, M., Fujiwara, A. and Arimura, S. Mitochondrial genome editing in potato using mitoTALEN and mitoTALECD. Plant Methods 19, 116, 2023.

    Khalid, S., Shaheen, S., Iqbal, S., Naeem, N. and Wajid, T. Plant genome editing for nutritional improvement. In: Genome Editing for Crop Improvement: Theory and Methodology. Wallingford: CABI, 166-173, 2025.

    Khatun, S. and Flowers, T. J. The estimation of pollen viability in rice. Journal of Experimental Botany 46, 151-154, 1995.

    Krishnamurthy, P., Vishal, B., Khoo, K., Rajappa, S., Loh, C. S. and Kumar, P. P. Expression of AoNHX1 increases salt tolerance of rice and Arabidopsis, and bHLH transcription factors regulate AtNHX1 and AtNHX6 in Arabidopsis. Plant Cell Reports 38, 1299-1315, 2019.

    Kühn, K., Obata, T., Feher, K., Bock, R., Fernie, A. R. and Meyer, E. H. Complete mitochondrial complex I deficiency induces an up-regulation of respiratory fluxes that is abolished by traces of functional complex I. Plant Physiology 168, 1537-1549, 2015.

    Kubo, T. and Newton, K. J. Angiosperm mitochondrial genomes and mutations. Mitochondrion 8, 5-14, 2008.

    Kuwabara, K., Arimura, S. I., Shirasawa, K. and Ariizumi, T. orf137 triggers cytoplasmic male sterility in tomato. Plant Physiology 189, 465-468, 2022.

    Li, T., Liu, B., Spalding, M. H., Weeks, D. P. and Yang, B. High-efficiency TALEN-based gene editing produces disease-resistant rice. Nature Biotechnology 30, 390-392, 2012.
    Li, Y. and Liu, Y. TTC staining method in infarct size measurement. Brain Research Protocols 3, 11-17, 2007.

    Liang, L., Zhang, J., Zhou, Q., Xu, J. and Liu, Z. Comparative analysis of detection methods for lotus pollen viability. Jiangsu Agricultural Sciences 50, 131-136, 2022.

    Lin, J. Y., Liu, Y. C., Tseng, Y. H., Chan, M. T. and Chang, C. C. TALE-based organellar genome editing and gene expression in plants. Plant Cell Reports 43, 61, 2024.

    Liu, Y., Fang, D., Xu, H., Tong, Z. and Xiao, B. Characteristics of MADS-box and SUPERMAN genes in tobacco cytoplasmic male sterile line K326. Acta Agronomica Sinica 49, 2171-2182, 2023.

    Lor, V. S., Starker, C. G., Voytas, D. F., Weiss, D. and Olszewski, N. E. Targeted mutagenesis of the tomato PROCERA gene using transcription activator-like effector nucleases. Plant Biotechnology Journal 12, 298-303, 2014.

    Marienfeld, J. R. and Newton, K. J. The maize NCS2 abnormal growth mutant has a chimeric nad4-nad7 mitochondrial gene and is associated with reduced complex I function. Genetics 138, 855-863, 1994.

    Melloni, M. L. G., Silveira, L. and Souza, A. Comparison of two staining methods for pollen viability studies in sugarcane. Sugar Tech 15, 103-107, 2014.

    Notsu, Y., Masood, S., Nishikawa, T., Kubo, N., Akiduki, G., Nakazono, M., Hirai, A. and Kadowaki, K. The complete sequence of the rice (Oryza sativa L.) mitochondrial genome: frequent DNA sequence acquisition and loss during the evolution of flowering plants. Molecular Genetics and Genomics 268, 434-445, 2002.

    Palmer, J. D. and Herbon, L. A. Plant mitochondrial DNA evolves rapidly in structure, but slowly in sequence. Journal of Molecular Evolution 28, 87-97, 1988.

    Qin, Y. and Yang, Z. Rapid isolation of Arabidopsis pollen and pollen tubes using Percoll gradients. Plant Cell Reports 30, 489-497, 2011.

    Rodriguez-Enriquez, M. J., Mehdi, S., Dickinson, H. G. and Grant-Downton, R. T. A novel method for in vitro pollen germination and pollen tube growth in Arabidopsis thaliana. New Phytologist 197, 668-679, 2013.
    Rodriguez-Riano, T. and Dafni, A. A new procedure to assess pollen viability. Sexual Plant Reproduction 12, 241-244, 2000.

    Shedge, V., Arrieta-Montiel, M., Christensen, A. C. and Mackenzie, S. A. Plant mitochondrial recombination surveillance requires unusual RecA and MutS homologs. The Plant Cell 19, 1251-1264, 2007.

    Song, J., Wu, Y., Zhang, J. and Xu, F. Analysis on the difference of pollen viability of Paeonia delavayi provenances at different altitudes. Plant Physiology Journal 58, 1675-1684, 2022.

    Streb, S. and Zeeman, S. C. Starch metabolism in Arabidopsis. The Arabidopsis Book 10, e0160, 2012.

    Sugiyama, Y., Watase, Y., Nagase, M., Makita, N., Yagura, S., Hirai, A. and Sugiura, M. The complete nucleotide sequence and multipartite organization of the tobacco mitochondrial genome: comparative analysis of mitochondrial genomes in higher plants. Molecular Genetics and Genomics 272, 603-615, 2005.

    Takatsuka, A., Kazama, T., Arimura, S. I. and Toriyama, K. TALEN-mediated depletion of the mitochondrial gene orf312 proves that it is a Tadukan-type cytoplasmic male sterility-causative gene in rice. The Plant Journal 115, 2022.

    Wall, M. K., Mitchenall, L. A. and Maxwell, A. Arabidopsis thaliana DNA gyrase is targeted to chloroplasts and mitochondria. Proceedings of the National Academy of Sciences of the United States of America 101, 7821-7826, 2004.

    Wall, M. K., Mitchenall, L. A. and Maxwell, A. Arabidopsis thaliana DNA gyrase is targeted to chloroplasts and mitochondria. Proceedings of the National Academy of Sciences of the United States of America 101, 7821-7826, 2004.

    Wei, S. and Ma, L. Tapetum-mediated pollen development in Arabidopsis: A comprehensive review. Cells 12, 247, 2023.

    Wu, Z.-Q., et al. Genomic architectural variation of plant mitochondria—A review of multichromosomal structuring. Journal of Systematics and Evolution 60, 160-168, 2022.

    Xu, L., et al. Overexpression of two CCCH-type zinc-finger protein genes leads to pollen abortion in Brassica campestris ssp. chinensis. Genes 11, 1287, 2020.

    Yu, T. S., Kofler, H., Häusler, R. E., Hille, D., Flügge, U. I., Zeeman, S. C. and Kossmann, J. The Arabidopsis sex1 mutant is defective in the R1 protein, a general regulator of starch degradation in plants. The Plant Cell 13, 1907-1918, 2001.

    Yu, Y., Yu, P. C., Chang, W. J., Yu, K. and Lin, C. S. Plastid transformation: How does it work? Can it be applied to crops? What can it offer? International Journal of Molecular Sciences 21, 4854, 2020.

    Zhang, D. and Boch, J. Development of TALE-adenine base editors in plants. Plant Biotechnology Journal 22, 1067-1077, 2023.

    Zhang, D., Pries, V. and Boch, J. Targeted C•G-to-T•A base editing with TALE-cytosine deaminases in plants. BMC Biology 22, 99, 2024.

    Zuo, J., Niu, W., Møller, G. and Chua, H. Chemical-regulated, site-specific DNA excision in transgenic plants. Nature Biotechnology 19, 157-161, 2001.

    無法下載圖示 校內:2030-08-26公開
    校外:2030-08-26公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE