| 研究生: |
鄭士揚 Cheng, Shih-Yang |
|---|---|
| 論文名稱: |
應用貝氏同化技術結合電阻率測錄與岩性紀錄於水力傳導係數更新 Bayesian assimilation of resistivity and lithologic logs for updating hydraulic conductivity |
| 指導教授: |
徐國錦
Hsu, Kuo-Chin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 英文 |
| 論文頁數: | 76 |
| 中文關鍵詞: | 資料融合 、貝氏 、水力傳導係數 、電阻率測錄 、岩性紀錄 、多尺度 、濁水溪沖積扇 |
| 外文關鍵詞: | Assimilation, Bayesian, Hydraulic Conductivity, Resistivity Logs, Lithology Description, Multi-Scale, Choushui River Alluvial Fan |
| 相關次數: | 點閱:186 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
推估異質性水力傳導係數在地下水資源管理與地下污染整治上十分重要,但是直接觀測的水力傳導係數資料十分稀少,因此推估結果存在不確定性。本研究使用貝氏統計方法同化次要資料以降低推估不確定性。不同於傳統地質統計方法,貝氏統計方法可以考慮資料的非線性關係。本研究利用假設案例驗證此方法的可行性。結果顯示,當主要資料與次要資料間存在高相關性,增加次要資料的數量可以有效率的改善水力傳導係數的估計結果。然而,資料的型態對於估計結果的影響不大。另外,本研究利用此方法探討電阻率測錄和岩性紀錄在推估濁水溪沖積扇水力傳導係數分布的有效性。結果顯示,同時使用兩種次要資料可以得到最精準的估測結果。相對於普通克利金的結果,含水層一不確定性下降達37.3 %,含水層二不確定性下降達9.6 %。此外,含水層一的水力傳導係數推估結果與先前研究推估的岩相分布具有相似的空間分布。
Characterizing spatially heterogeneous hydraulic conductivity (K) plays a crucial role in groundwater resources management and subsurface contaminant remediation. Since the direct measurements of K are sparse, the uncertainty is inherent in the estimated parameters. We propose to decrease the uncertainty by assimilating secondary data (related with K to some degree) with the primary data (K) using Bayesian statistical method. Different from classical geostatistical methods, both linear and nonlinear relations between the primary and secondary data can be considered in Bayesian statistical method. A synthetic example is designed to evaluate the method. Results show that increasing numbers of secondary data improves K estimates efficiently if higher correlation exists for primary and secondary data. However, the relation type has little influence on the accuracy and uncertainty. Also, we explore the use of resistivity logs and lithologic description for K estimation at Choushui River alluvial fan using the method. Results indicate jointly assimilating both types of secondary data can obtain the most accurate and least uncertain estimates. By combining both types of data with K data, a less uncertain K distribution of Choushui River alluvial fan is obtained. The K distribution of aquifer 1 has similar spatial variation with the result of facies distribution from previous study. The reduction efficiency of uncertainty is 37.3 % for aquifer 1 and 9.6 % for aquifer 2 compared to the uncertainty by ordinary kriging.
1. Ahmed, S., G. Marsily and A. Talbot (1988), Combined Use of Hydraulic and Electrical Properties of an Aquifer in a Geostatistical Estimation of Transmissivity, Ground Water, 26(1), 78-86.
2. Archie, G. (1942), The Electrical Resistivity Log as an Aid in Determining Some Reservoir Characteristics, Transactions of the AIME, 146(01), 54-62.
3. Bao, J., Z. Hou, J. Ray, M. Huang, L. Swiler and H. Ren (2018), Soil moisture estimation using tomographic ground penetrating radar in a MCMC–Bayesian framework, Stochastic Environmental Research and Risk Assessment, 32(8), 2213-2231.
4. Cassiani, G. and M. Medina (1997), Incorporating Auxiliary Geophysical Data into Ground-Water Flow Parameter Estimation, Ground Water, 35(1), 79-91.
5. Cassiani, G., G. Böhm, A. Vesnaver and R. Nicolich (1998), A geostatistical framework for incorporating seismic tomography auxiliary data into hydraulic conductivity estimation, Journal of Hydrology, 206(1-2), 58-74.
6. Central Geological Survey (1999), Project of groundwater monitoring network in Taiwan during first stage: General report on hydrogeology research in Choushui River alluvial fan. Central Geological Survey, MOEA, Taiwan (in Chinese).
7. Chang, P., Y. Chen, J. Tsai, L. Chang, C. Chiang, H. Lin, Y. Chen (2013). The Estimating of Hydraulic Conductivity Using 1-D Electrical Resistivity Measurement-A Case Study of the Shallow Aquifer in the Zhuoshui River Alluvial Fan, Journal of the Chinese Institute of Civil and Hydraulic Engineering, 25(4), 311–321 (in Chinese).
8. Chen, J., S. Hubbard and Y. Rubin (2001), Estimating the hydraulic conductivity at the south oyster site from geophysical tomographic data using Bayesian Techniques based on the normal linear regression model, Water Resources Research, 37(6), 1603-1613.
9. Chen, J., S. Hubbard, Y., Rubin, C. Murray, E. Roden and E. Majer (2004), Geochemical characterization using geophysical data and Markov Chain Monte Carlo methods: A case study at the South Oyster bacterial transport site in Virginia, Water Resources Research, 40(12).
10. Chitsazan, N. and F. Tsai (2015), A Hierarchical Bayesian Model Averaging Framework for Groundwater Prediction under Uncertainty, Groundwater, 53(2), 305-316.
11. Deutsch, C. and A. Journel (1998). GSLIB: Geostatistical software library and user's guide. 2nd ed. New York, NY ;Berlin [u.a.]: Oxford Univ. Press.
12. Dubreuil-Boisclair, C., E. Gloaguen, D. Marcotte and B. Giroux (2011), Heterogeneous aquifer characterization from ground-penetrating radar tomography and borehole hydrogeophysical data using nonlinear Bayesian simulations, GEOPHYSICS, 76(4), J13-J25.
13. Earle, S., 2014, Physical Geology, B.C. campus Open Education, British Columbia Ministry of Advanced Education and the Hewlett Foundation, download this book for free at http://open.bccampus.ca.
14. El Idrysy, E. and F. De Smedt (2007), A comparative study of hydraulic conductivity estimations using geostatistics, Hydrogeology Journal, 15(3), 459-470.
15. Ezzedine, S., Y. Rubin and J. Chen (1999), Bayesian Method for hydrogeological site characterization using borehole and geophysical survey data: Theory and application to the Lawrence Livermore National Laboratory Superfund Site, Water Resources Research, 35(9), 2671-2683.
16. Fienen, M., R. Hunt, D. Krabbenhoft and T. Clemo (2009), Obtaining parsimonious hydraulic conductivity fields using head and transport observations: A Bayesian geostatistical parameter estimation approach, Water Resources Research, 45(8).
17. Freeze, R. (1975), A stochastic-conceptual analysis of one-dimensional groundwater flow in nonuniform homogeneous media, Water Resources Research, 11(5), 725-741.
18. Freeze, R. and J. Cherry (1979), Groundwater. Englewood Cliffs, N.J: Prentice-Hall.
19. Gelhar, L. (1993), Stochastic subsurface hydrology. Englewood Cliffs, N.J.: Prentice-Hall.
20. Hartmann, A., T. Gleeson, Y. Wada and T. Wagener (2017), Enhanced groundwater recharge rates and altered recharge sensitivity to climate variability through subsurface heterogeneity, Proceedings of the National Academy of Sciences, 114(11), 2842-2847.
21. Hoff, P. (2009), A First Course in Bayesian Statistical Methods. Dordrecht: Springer.
22. Hubbard, S. and Y. Rubin (2000), Hydrogeological parameter estimation using geophysical data: a review of selected techniques. Journal of Contaminant Hydrology, 45(1-2), 3-34.
23. Hyndman, D., J. Harris and S. Gorelick (2000), Inferring the relation between seismic slowness and hydraulic conductivity in heterogeneous aquifers, Water Resources Research, 36(8), 2121-2132.
24. Irving, J. and K. Singha (2010), Stochastic inversion of tracer test and electrical geophysical data to estimate hydraulic conductivities, Water Resources Research, 46(11).
25. Jiang, Z., C. Schrank, G. Mariethoz and M. Cox (2013), Permeability estimation conditioned to geophysical downhole log data in sandstones of the northern Galilee Basin, Queensland: Methods and application, Journal of Applied Geophysics, 93, 43-51.
26. Kelly, W. (1977), Geoelectric Sounding for Estimating Aquifer Hydraulic Conductivity, Ground Water, 15(6), 420-425.
27. Keys, W. and MacCary, L. (1971), Application of borehole geophysics to water-resources investigations. Washington, DC: United States Government Printing Office.
28. Kitanidis, P. (1986), Parameter Uncertainty in Estimation of Spatial Functions: Bayesian Analysis, Water Resources Research, 22(4), 499-507.
29. Li, N. and L. Ren (2010), Application and assessment of a multiscale data integration method to saturated hydraulic conductivity in soil. Water Resources Research, 46(9).
30. Liang, J., G. Zeng, S. Shen, S. Guo, X. Li, Y. Tan, Z. Li and J. Li (2015), Bayesian approach to quantify parameter uncertainty and impacts on predictive flow and mass transport in heterogeneous aquifer, International Journal of Environmental Science and Technology, 12(3), 919-928.
31. Lin, H. (2013). The Estimating of Hydraulic Conductivity Using 1-D Electrical Resistivity Measurement-A Case Study in the Zhuoshui River Alluvial Fan. Master Thesis. National Chiao Tung University, Department of Civil Engineering (in Chinese).
32. Lin, Y., Y. Chen, L. Chang, M. Yeh, G. Huang and J. Petway (2017), Groundwater Simulations and Uncertainty Analysis Using MODFLOW and Geostatistical Approach with Conditioning Multi-Aquifer Spatial Covariance, Water, 9(3), 164.
33. Linde, N., S. Finsterle and S. Hubbard (2006), Inversion of tracer test data using tomographic constraints, Water Resources Research, 42(4).
34. Neufeld, C. and C.V. Deutsch (2004), Incorporating secondary data in the prediction of reservoir properties using Bayesian updating, CCG Paper 2004-114, Centre for Computational Geostatistics, University of Alberta, Edmonton, Canada, 1–14.
35. Panzeri, M., M. Riva, A. Guadagnini and S. Neuman (2013), Data assimilation and parameter estimation via ensemble Kalman filter coupled with stochastic moment equations of transient groundwater flow, Water Resources Research, 49(3), 1334-1344.
36. Perdomo, S., J. Ainchil and E. Kruse (2014), Hydraulic parameters estimation from well logging resistivity and geoelectrical measurements, Journal of Applied Geophysics, 105, 50-58.
37. Rehfeldt, K., J. Boggs and L. Gelhar (1992), Field study of dispersion in a heterogeneous aquifer: 3. Geostatistical analysis of hydraulic conductivity, Water Resources Research, 28(12), 3309-3324.
38. Ruggeri, P., J. Irving, E. Gloaguen and K. Holliger (2013), Regional-scale integration of multiresolution hydrological and geophysical data using a two-step Bayesian sequential simulation approach, Geophysical Journal International, 194(1), 289-303.
39. Salamon, P., D. Fernàndez-Garcia and J. Gómez-Hernández (2007), Modeling tracer transport at the MADE site: The importance of heterogeneity, Water Resources Research, 43(8).
40. Sepúlveda, N. and J. Doherty (2015), Uncertainty Analysis of a Groundwater Flow Model in East-Central Florida, Groundwater, 53(3), 464-474.
41. Serra, O. (1986), Fundamentals of well-log interpretation, Amsterdam: Elsevier.
42. Sohrabi, M., R. Benjankar, D. Tonina, S. Wenger and D. Isaak (2017), Estimation of daily stream water temperatures with a Bayesian regression approach, Hydrological Processes, 31(9), 1719-1733.
43. Taillet, E., J. Lataste, P. Rivard and A. Denis (2014), Non-destructive evaluation of cracks in massive concrete using normal dc resistivity logging, NDT & E International, 63, 11-20.
44. Troisi, S., C. Fallico, S. Straface and E. Migliari (2000), Application of kriging with external drift to estimate hydraulic conductivity from electrical-resistivity data in unconsolidated deposits near Montalto Uffugo, Italy, Hydrogeology Journal, 8(4), 356-367.
45. Tsai, J., P. Chang, T. Yeh, L. Chang and C. Hsiao (2019), Constructing the Apparent Geological Model by Fusing Surface Resistivity Survey and Borehole Records, Groundwater.
46. Urish, D. (1981), Electrical resistivity-hydraulic conductivity relationships in glacial outwash aquifers, Water Resources Research, 17(5), 1401-1408.
47. Wainwright, H., J. Chen, D. Sassen and S. Hubbard (2014), Bayesian hierarchical approach and geophysical data sets for estimation of reactive facies over plume scales, Water Resources Research, 50(6), 4564-4584.
48. Water Resources Agency (1995), Project of groundwater monitoring network in Taiwan during first stage: Establishment and operational management of groundwater monitoring network in Choushui River alluvial fan, Water Resources Agency, MOEA, Taiwan (in Chinese).
49. Woodbury, A. and T. Ulrych (2000), A full-Bayesian approach to the groundwater inverse problem for steady state flow, Water Resources Research, 36(8), 2081-2093.
50. Zanini, A., M. Tanda and A. Woodbury (2017), Identification of transmissivity fields using a Bayesian strategy and perturbative approach, Advances in Water Resources, 108, 69-82.
51. Zhu, L., H. Gong, Y. Chen, X. Li, X. Chang and Y. Cui (2016), Improved estimation of hydraulic conductivity by combining stochastically simulated hydrofacies with geophysical data, Scientific Reports, 6(1).
52. Zinn, B. and C. Harvey (2003), When good statistical models of aquifer heterogeneity go bad: A comparison of flow, dispersion, and mass transfer in connected and multivariate Gaussian hydraulic conductivity fields, Water Resources Research, 39(3).