| 研究生: |
陳俊仁 Chen, Chun-Jen |
|---|---|
| 論文名稱: |
使用歪斜光線追蹤法發展光電式多自由度量測系統 The developments of multi-degree-of-freedom optoelectronic measuring systems by using the skew-ray tracing method |
| 指導教授: |
林昌進
Lin, Psang Dain |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 141 |
| 中文關鍵詞: | 歪斜光線追蹤 、光電式水平儀 、多自由度 、量測系統 、角度量測系統 |
| 外文關鍵詞: | skew-ray tracing, measurement system, angle measurement system, optoelectronic inclinometer, multi-degree-of-freedom |
| 相關次數: | 點閱:126 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
高精度光電式動作/位置量測系統,大都是利用光線在兩個光學組件間進行多次折反射,以提高精確度。但是要精確求得感測器讀值與待測位置/角度的關係函數並不容易,本文即是在解決此問題。本文以一個量測系統作為範例,並用歪斜光線追蹤法配合有限差分法,推導出感測器讀值的關係函數,驗證本文所提出之方法,結果顯示本文之方法可精確地提供位置感測器函數。此外,本文另外建立光電式水平儀、高精度角度量測系統及六自由度量測系統等三個光電式多自由度量測系統。
本研究之光電式水平儀由一個單擺、兩個平面反射鏡、一個二維位置感測器及一個雷射二極體所組成,其可用於同時量測兩個垂直方向之傾斜角度。為驗證系統建模結果,本文實際架構此系統,並完成系統校正及穩定度測試等實驗。
本研究之高精度角度量測系統利用一個雷射二極體、一個二維位置感測器及兩面平面反射鏡之間的連續反射達成高精度角度量測。本文已完成系統校正及穩定度測試已完成,系統的精度及量測範圍分別為0.05 arc sec及±250 arc sec。
本研究之六自由度量測系統由一個錐形多面反射鏡、三個雷射二極體及三個二維位置感測器所組成。為驗證系統建模結果,本文實際建構此系統,並完成系統驗證及穩定度測試等實驗。穩定度測試結果顯示本系統之位移量測穩定度約為±1 μm,旋轉量測穩定度約為±1.5 arc sec。
High-accuracy laser-based optoelectronic motion and position measuring systems typically utilize light rays that travel from one optical assembly to another to perform motion and/or position measurements. It is not a simple task to accurately determine the equations of these sensor readings in terms of positional/angular motions. This problem is addressed in this paper by application of the analytic skew-ray tracing methodology as computed by finite difference methodology. An illustrative example of a motion measurement system and comparison of the Position Sensing Detector (PSD) readings are given to validate the proposed methodology. It is shown that the proposed methodology can provide accurate expressions of PSD readings. Based on the proposed methodology, the following three optoelectronic multi-degree-of-freedom measurement systems are established: an optoelectronic inclinometer, a high angular accuracy measurement system and a six Degree-Of-Freedom (DOF) motion measurement system.
The optoelectronic inclinometer which can measure inclination angles along two orthogonal directions simultaneously by using a simple pendulum, two mirrors, a 2-axis PSD, and a laser diode. To validate the proposed methodology, an actual prototype system is built, and its calibration and stability experiments are performed.
The high accuracy angle measurement system performs angle measurement by use of laser-diodes, 2-axis PSDs and a series of reflections between two first-surface-mirrors. Calibration and stability experiments are performed. Experimental results show the accuracy and measurement range are, respectively, 0.05 arc sec and ±250 arc sec.
The six-DOF measurement system comprises a pyramid-polygon- mirror, three laser diodes and three 2-axis PSDs. To validate the proposed methodology, a laboratory prototype system is built. System verification and stability tests are conducted to evaluate its performance. Stability test results show that measurement errors and maximum crosstalk are within ±1 μm in translation and ±1.5 arc sec in rotation.
1. “Angle Encoder,” Heidenhain GmbH, Traunreut, Gemary, 2004.
2. “Agilent 5529A Dynamic Calibrator,” Agilent Technologies, Santa Clara, USA, 2000.
3. “LDS Electronic autocollimator,” NewPort Corporation, Irvine, USA, 1998.
4. “Inclination measurement with compendium yesterday today tomorrow,” Wyler AG, Winterhur, Switzerland, 2001.
5. G. D. Chapman, “Interferometric Angular Measurement,” Applied Optics, Vol.13, No.7, pp.1646-1651, 1974.
6. P. Shi, and E. Stijing, “New optical method for measuring small-angle rotation,” Applied Optics, Vol.27, No.20, pp.4342-4344, 1988.
7. P. S. Huang, S. Kiyono, and O. Kamada, , “Angle measurement based on the internal- reflection effect: a new method,” Applied Optics, Vol.31, No.28, pp.6047-6055, 1992.
8. D. Xiaoli, S. Osami, E.G. John, and S. Takamasa, “Measurement of two-dimensional small rotation angles by using orthogonal parallel interference pattern,” Applied Optics, Vol.35, No.28, pp.5657-5666, 1996.
9. D. Xiaoli, S. Osami, E. G. John, and S. Takamasa, “High accuracy, wide range, rotation angle measurement by the use of two parallel interference pattern,” Applied Optics, Vol.36, No.25, pp.6190-6195, 1997.
10. M. H. Chiu, and D. C. Su, “Improved technique for measuring small angle,” Applied Optics, Vol.36, No.28, pp.7104-7106, 1997.
11. W. Zhou, and L. Cai, “Interferometer for small-angle measurement based on total internal reflection,” Applied Optics, Vol.37, No.25, pp.5657-5666, 1998.
12. P. S. Huang, and Y. Li, “Small-angle measurement by using of a single prism,” Applied Optics, Vol.37, No.28, pp.6636-6642, 1998.
13. J. Guo, Z. Zhu, and W. Deng, “Small-angle measurement based on surface-plasma resonance and the use of magneto-optical modulation,” Applied Optics, Vol.38, No.31, pp.6550-6555, 1999.
14. Z. Ge, and M. Takeda, “High-resolution two-dimensional angle measurement technique based on fringe analysis,” Applied Optics, Vol.42, No.34, pp.6859-6868, 2003.
15. M. H. Chiu, S. F. Wang, and R. S. Chang, “Instrument for measuring small angle by use of multiple total internal reflection in heterodyne interferometry,” Applied Optics, Vol.43, No.29, pp.5438-5442, 2004.
16. C. Zhang, and X. Wang, “Sinusoidal phase-modulating laser diode interferometer for measuring angular displacement,” Opt. Eng., No.43, Vol.12, pp.3008-3013, 2004.
17. H. P. Chiang, J. L. Lin, R. Chang, and S. Y. Su, “High-resolution angular measurement using surface-plasmon-resonance via phase interrogation at optimal incident wavelengths,” Optics Letter, Vol.30, No.20, pp.2727-2729, 2005.
18. F. Chen, Z. Cao, Q. Shen, and Y. Feng, “Optical approach to angular displacement measurement based on attenuated total reflection,” Applied Optics, Vol.44, No.26, pp.5393-5397, 2005.
19. O. Frazão, R. Falate, J. L. Fabris, J. L. Santos, L. A. Ferreira, and F. M. Araújo, “Optical inclinometer based on a single long-period fiber grating combined with a fused taper,” Optics Letter, Vol.31, No.20, pp.2960-2962, 2006.
20. P. É. Egorov, V. F. Zakharenkov, V. S. Pavlov, and V. Ya. Tel'kunov, “A photoelectric angular-position sensor,” Optical Instrumentation and Technology, No.73, pp.69-75, 2006.
21. C. Schott, R. Racz, and S. Huber, “Novel analog magnetic angle sensor with linear output,” Sensors and Actuators A, No.132, pp.165-170, 2006.
22. W. Y. Zhang, J. Zhang, and L. Y. Wu, “Small-Angle Measurement of Laser Beam Steering Based on Total Internal-Reflection Effect,” Journal of Physics: Conference Series, No.48, pp.766-770, 2006.
23. Z. Sun, Y. He, and J. Guo, “Surface plasmon resonance sensor based on polarization interferometry and angle modulation,” Applied Optics, Vol.45, No.13, pp.3071-3076, 2006.
24. T. Suzuki, T. Endo, and O. Sasaki, “Two-dimensional small-rotation-angle measurement using an imaging method,” Optical Engineering, Vol.45, No.4, pp.1-7, 2006.
25. W. Gao, and S. Kiyono, , “Development of an optical probe for profile measurement of mirror surface,” Optical Engineering, Vol.36, No.12, pp.3360-3366, 1997.
26. W. Gao, S. Kiyono, and E. Soatoh, “Precision Measurement of Multi-Degree-of-Freedom Spindle Errors Using Two-dimensional Slope Sensor,” Annals of the CIRP, Vol51, pp.447-450, 2002.
27. W. Gao, S. Dejima, Y. Shimizu, and S. Kiyono, “Precision Measurement of Two-Axis Positions and Tilt Motions Using Surface Encoder,” Annals of the CIRP, Vol52, pp.435-438, 2003.
28. W. Gao, T. Ohnuma, H. Satoh, H. Shimizu, and S. Kiyono, “A precision Angle Sensor Using a Multi-cell Photodiode Array,” Annals of the CIRP, Vol52, pp.425-428, 2004.
29. J. A. Kim, K. C. Kim, E. W. Bae, S. Kim, and Y. K. Kwak, “Six-degree-of-freedom displacement system using a diffraction grating,” Review of Scientific Instruments, Vol. 71, No. 8, pp.3214-3219, 2000.
30. E. W. Bae, J. A. Kim, and S. H. Kim, “Multi-degree-of-freedom displacement system for milli-structures,” Measurement Science and Technology, Vol.12, pp.1495-1502, 2001.
31. J. A. Kim, K. C. Kim, E. W. Bae, S. H. Kim, and Y. K. Kwak, “Design methods for six-degree-of-freedom-displacement systems using cooperative targets,” Precision Engineering, Vol.26, pp.99-104, 2002.
32. C. H. Liu, W. Y. Jywe, L. H. Shyu, and C. J. Chen, “Application of a diffraction grating and position sensitive detectors to the measurement of error motion and angular indexing of an indexing table,” Precision Engineering, Vol.29, pp.440-448, 2005.
33. C. H. Liu, W. Y. Jywe, and C. J. Chen, “A simple 3D laser angle sensor for three-dimensional small-angles measurement”, Applied Optics, Vol. 43, Issue 14, pp.2840-2845, 2004.
34. J. Ni, and S. M. Wu, “An On-Line Measurement Technique for Machine Volumetric Error Compensation,” ASME Journal of Engineering for Industry, Vol. 115, pp. 85-92., 1993.
35. P. D. Lin, and K. F. Ehmann, “Sensing of Motion Related Errors in Multi-axis Machines,” ASME Journal of Dynamic Systems, Measurement, and Control, Vol.118, No.3, pp. 425-433, 1996.
36. S. W. Lee, R. Mayor, and J. Ni., “Development of a Six-Degree-of-Freedom Geometric Error Measurement System for a Meso-Scale Machine Tool,” ASME Journal of Manufacturing Science and Engineering, Vol.127, No.3, pp. 857-865, 2005.
37. Agilent Technologies, “Optics and Laser Heads for Laser-Interferometer Position Systems: Product Overview,” Agilent Technologies, Santa Clara, USA, 2000.
38. C. W. Lee, and S. W. Kim, “An ultra precision stage for alignment of wafers in advanced microlithography,” Precision Engineering, 21, pp.113-122, 1997.
39. M. Holmes, R. Hocken, and D. Trumper, “The long-range scanning stage: a novel platform for scanned-probe microscopy,” Precision Engineering, Vol.24, pp.191-209, 2000.
40. M. Sawabe, F. Maeda, Y. Yamaryo, T. Simomura, Y. Saruki, T. Kubo, H. Sakai, and S. Aoyagi, “A new vacuum interferometric comparator for calibrating the fine linear encoders and scale,” Precision Engineering, Vol.28, pp.320-328, 2004.
41. T. J. Miles, M. Lucas, N. A. Halliwell, and S. J. Rothberg, “Torsional and bending vibration measurement of rotors using laser technology,” Journal of Sound and Vibration, Vol, 226, No.3, pp.441-467, 1999.
42. J. R. Bell, and S. J. Rothberg, “Laser vibrometers and contacting transducers, target rotation and six degree-of-freedom vibration: what do we really measure?,” Journal of Sound and Vibration, Vol.237, No.2, pp.245-261, 2000.
43. J. R. Bell, and S. J. Rothberg, “Rotational vibration measurements using laser Doppler vibrometry: comprehensive theory and practical application,” Journal of Sound and Vibration, Vol.238, No.4, pp.673-690, 2000.
44. S. Rothberg, and J. Bell, “On the application of laser vibrometry to translational and rotational vibration measurement on rotating shafts,” Measurement, Vol.35, pp.201-210, 2004.
45. D. B. Newell, S. J. Richman, P. G. Nelson, R. T. Stebbins, P. L. Bender, and J. E. Fallerc, “An ultra-low-noise, low-frequency, six degrees of freedom activevibration isolator,” Review of Science Instrument, Vol.68, No.8, pp.3211-3219, 1997.
46. W. J. Wang, and T. He, “A high precision micropositioner with five degrees of freedom based on an electromagnetic driving principle,” Review of Science Instrument, Vol.67, pp.312-317, 1996.
47. E.H. Bokelberg, H.J. Sommer III, and M.W. Tretheway, “A Six-Degree-Of- Freedom Laser Vibrometer, Part I: Theoretical Development,” Journal of Sound and Vibration, Vol.178, No.5, pp643-654, 1994.
48. E. H. Bokelberg, H. J. Sommer III, and M. W. Tretheway, “A Six-Degree-Of- Freedom Laser Vibrometer, Part II: Experimental Validation,” Journal of Sound and Vibration, Vol.178, No.5, pp655-667, 1994.
49. W. S. Park, and H. S. Cho, “Measurement of fine 6-degree-of-freedom displacement of rigid bodies through splitting a laser beam: experimental investigation,” Optical Engineering, No. 41, Vol. 4, pp.860-871, 2002.
50. Neville K.S. Lee, Y. Cai, and A. Joneja, “High-resolution multidimensional displacement monitoring system,” Optical Engineering, Vol.36, No.8, pp.2287-2293, 1997.
51. K. C. Fan and M. J. Chen, “A 6-degree-of-freedom measurement system for the accuracy of X-Y stage,” Precision Engineering, Vol.24, pp. 15-23, 2000.
52. W. Gao, S. Dejima, and S. Kiyono, “A dual-mode surface encoder for position measurement,” Sensor and Actuators A, Vol.117, pp.95-102, 2005.
53. J. H. Lee, Y. Liu, and S. H. Yang, “Accuracy improvement of miniaturized machine tool: Geometric error modeling and compensation,” International Journal of Machine Tools & Manufacture, No.46, pp.1508-1516, 2006.
54. S. Kiyono, S. Zhang, and Y. Uda, “Self-calibration of precision angle sensor and polygon mirror,” Measurement Vol.21, No.4, pp.125-136, 1997.
55. T. Yandayan, S. A. Akgöza, and H. Haitjema, “A novel technique for calibration of polygon angles with non-integer subdivision of indexing table,” Journal of the International Societies for Precision Engineering and Nanotechnology, Vol.26, pp.412–424, 2002.
56. K. Y. Lin, “Application of Laser Interferometer to the automation calibration of Angular indexing on machine tools,” UMIST Ph.D Thesis, Manchester University, U.K, 1994.
57. W. Y. Jywe, C. J. Chen, Y. F. Teng, and C. H. Liu, “A novel simple and low cost 4-DOF angular indexing calibrating techniques for high precision rotary table,” 8th Biennial ASME Conference on Engineering Systems Design and Analysis, July 4-7, 2006, Torino, Italy
58. E. Hecht, Optics fourth edition, Addison Wesley, New York, USA, 2002.
59. Max Born, and Emil Wolf, Principle of Optics, seventh (expanded) edition, Cambridge University Press, New York, USA, 1999.
60. F. A. Jenkins and H. E. White, Fundamentals of Optics, fourth edition, McGraw-Hill
61. W. J. Smith, Modern Optical Engineering 3rd edition, SPIE Press, McGraw-Hill, New York, USA, 2001.
62. R. S. Longhurst, Geometric and Physical Optics, Longmans, Green, pp.42-44, 1964
63. ASAP, http://www.breault.com/software/asap.php, Breault Research Organization, Arizona, USA, 2006.
64. TracePro, http://www.lambdares.com/index.phtml, Lambda Research Co., Littleton, USA, 2006.
65. P. D. Lin, and T. T. Liao, “Skew-Ray Tracing and Sensitivity Analysis of Geometrical Optics,” Transaction of the ASME Journal of Manufacture Science and Engineering, Vol.122, pp.338-349, 2000.
66. P. D. Lin, and T. T. Liao, “Analysis of Optical Elements with Flat Boundary Surfaces”, The Journal of Applied Optics, Vol.42, No.7, pp.1191-1202, 2003..
67. P. D. Lin, and C. H. Lu, “Analysis and Design of Optical System by Using Sensitivity Analysis of Skew Ray Tracing,” The Journal of Applied Optics, Vol.43, No.4, 2004.
68. P. D. Lin, and C. H. Lu, “Modeling and Sensitivity Analysis of laser tracking system by Skew-ray tracing method,” Transaction of the ASME Journal of Manufacture Science and Engineering, Vol.254, pp.654-662, 2005.
69. J. D. Foley, A. V. Dam, S. K. Feiner, and J. F. Hughes, Computer Graphics, Principles and Practices, second edition, Addison-Wesley, 1981.
70. R. P. Paul, Robot Manipulator-Mathematics, Programming and Control, MIT press, Cambridge, 1982.
71. C. H. Wu, “Robot Accuracy Analysis Based on Kinematics,” IEEE Journal of Robotics and Automation, Vol.RA-2/3, pp.171-179, 1986.
72. J. Denavit, and R. S. Hartenberg, “A Kinematic Notation for Lower Pair Mechanism Based on Matrices,” Transactions of the ASME Journal of applied mechanics, Vol.77, pp.215-221, 1955.
73. J. J. Uicker, “On the Dynamic Analysis of Spatial Linkage Using Matrices,” Dissertation for Doctor of Philosophy, Northwestern University, Evanston, IL., Aug., 1965.
74. 廖德潭, “雙照相機立體成像系統的建模與分析,” 成功大學機械系博士論文,中華民國九十二年一月。
75. 盧嘉鴻, “雷射追蹤器的光學建模與分析,” 成功大學機械系博士論文,中華民國九十三年七月。
76. 宋旗貴, “應用歪斜光線追蹤法及近軸光線追蹤法於照相機校正,” 成功大學機械系博士論文,中華民國九十五年一月。
77. Tilt Measurement Limited, “ELH103 High Precision Submersible Sensing Head range 0.5 degrees,” http://www.tilt-measurement.com, 2004
78. GEMAC GmbH, “2D Inclination Sensorswith CAN Bus Interface,” http://www.gemac-chemnitz.de, 2005.
79. F. Donatini, J. Monin, and G. Noyel, “Investigation of an inclination sensor using magnetic fluid for angle measurement up to 90 degree,” Meas. Sci. Technol., Vol.6, pp.1-3, 1995.
80. O. Baltag, D. Costandache, and A. Salceanu, “Tilt measurement sensor,” Sensor and Actuators A, Vol.81, pp.226-339, 2000.
81. R. Olaru, and D. D. Dragoi, “Inductive tilt sensor with magnets and magnetic fluid,” Sensor and Actuators A, Vol.120, pp.424-428, pp.2005.