簡易檢索 / 詳目顯示

研究生: 陳畇憲
Chen, Yun-Hsien
論文名稱: 2,3-二氯吡嗪及2,6-二氯吡嗪在銅(100)和氧/銅(100)表面上的熱反應研究
Thermal Chemistry of 2,3-Dichloropyrazine and 2,6-Dichloropyrazine on Cu(100) and O/Cu(100) Surfaces
指導教授: 林榮良
Lin, Jong-Liang
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 101
中文關鍵詞: 程序控溫反應/脫附反射式紅外光吸收光譜X-光電子電子能譜超高真空系統2,3-二氯吡嗪2,6-二氯吡嗪銅(100)
外文關鍵詞: Temperature-programmed reaction/desorption, X-ray photoelectron spectroscopy, 2,3-dichloropyrazine, 2,6-dichloropyrazine, Cu(100)
相關次數: 點閱:78下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文利用程序控溫反應/脫附(TPR/D)、反射式紅外光吸收光譜(RAIRS)和X-光電子電子能譜(XPS)在超高真空系統中(UHV)去分析並研究2,3-二氯吡嗪(2,3-dichloropyrazine)和2,6-二氯吡嗪(2,6-dichloropyrazine)在Cu(100)及O/Cu(100)上的熱反應。
    120 K時的Cu(100)表面上,2,3-二氯吡嗪和2,6-二氯吡嗪會以N上的孤對電子和Cu作用並吸附,2,3-二氯吡嗪在約220時會開始斷C-Cl鍵,形成C4H2ClN2吸附於表面,C-Cl鍵在約470 K時斷光,形成中間物C4H2N2吸附於表面,最後在溫度達到570 K以上時,中間物分子會開始破環形成產物HCN、HCl脫附,並在更高溫約800 K之後產生C2N2脫附。
    在氧預吸附的Cu(100)表面時,2,3-二氯吡嗪和2,6-二氯吡嗪同樣以N上的孤對電子和Cu作用並吸附,約240 K時,表面的氧原子會和C-H的氫原子形成OH吸附於表面,隨後馬上形成H2O的脫附,此時部分C-Cl也會開始斷裂,溫度大於530 K之後分子會破環並和表面的氧作用形成H2O、CO和CO2脫附,並在後續高溫出現HCN、N2、NO和C2N2等產物脫附。

    Temperature-programmed reaction/desorption (TPR/D), reflection-absorption infrared spectroscopy (RAIRS) and X-ray photoelectron spectroscopy (XPS) have been used to investigate the adsorption and reactions of 2,3-dichloropyrazine (2,3-C4H2Cl2N2) and 2,6-dichloropyrazine (2,6-C4H2Cl2N2) on Cu(100) and oxygen-precovered Cu(100). Our results show that 2,3-C4H2Cl2N2 and 2,6-C4H2Cl2N2 are the predominant adsorbates on Cu(100) at 120 K. 2,3-C4H2Cl2N2 and 2,6-C4H2Cl2N2 undergo partial C-Cl bond scission at 220 K, forming the C4H2ClN2(a) intermediates. Upon heating to 470 K, all of the C-Cl bonds have broken to generate the intermediates of C4H2N2(a). At higher temperatures, further decomposition of the C4H2N2(a) occurs and generates reaction products of HCN, HCl and C2N2.On the surface of O/Cu(100), the presence of the preadsorbed oxygen promotes C-H bond cleavage to form OH(a) on the surface at a low temperature. By heating to 240 K, the OH groups undergo a disproportional reaction to envolve H2O. It’s also found that a portion of the adsorbates undergoes C-Cl dissociation at 250 K, forming C4HClN2 intermediate. After heating to 450 K, all the C-Cl bonds have broken, resulting in the formation of C4HxN2(a)(x=0~1) can be formed. This intermediate decomposes to form the desorption product of H2O, CO, CO2, NO and N2.

    目錄 第一章 緒論 1 1.1 表面化學的發展 1 1.2 表面的定義 1 1.3 表面吸附 2 1.4 真空的定義及應用 3 1.5 研究動機與文獻回顧 4 第二章 表面實驗分析技術 8 2.1 程式控溫反應/脫附(Temperature-Programmed Reaction /Desorption, TPR/D) 8 2.2 反射式吸收紅外光譜(Reflection-Absorption Infrared Spectroscopy, RAIRS) 11 2.3 X-光光電子能譜(X-ray photoelectron spectroscopy, XPS) 14 第三章 實驗系統 17 3.1 超高真空系統(Ultra high vacuum, UHV) 17 3.2 單晶的前處理方法 19 3.3 氧化表面的製備 19 3.4 藥品的前處理方法 19 第四章 結果與討論 21 4.1 2,3-dichloropyrazine於Cu(100)和O/Cu(100)表面上的程序控溫反應/脫附(TPR/D)研究 21 4.1.1 2,3-dichloropyrazine於Cu(100)表面上的TPR/D研究...................21 4.1.2 2,3-dichloropyrazine於O/Cu(100)表面上的TPR/D研究………...32 4.2 2,3-dichloropyrazine 於Cu(100)和O/Cu(100)表面上的X光光電子能譜(XPS)研究 46 4.2.1 2,3-dichloropyrazine於Cu(100) 表面上的XPS研究…………….46 4.2.2 2,3-dichloropyrazine於O/Cu(100) 表面上的XPS研究………….51 4.3 2,3-dichloropyrazine 於Cu(100)和O/Cu(100)表面上的反射式吸收紅外光譜(RAIRS)研究 54 4.3.1 2,3-dichloropyrazine於Cu(100)表面上的RAIRS研究…………..54 4.3.2 2,3-dichloropyrazine於O/Cu(100)表面上的RAIRS研究………..64 4.4 2,6-dichloropyrazine 於Cu(100)和O/Cu(100)表面上的程序控溫反應/脫附(TPR/D)研究 66 4.4.1 2,6-dichloropyrazine於Cu(100)表面上的TPR/D研究…………...66 4.4.2 2,6-dichloropyrazine於O/Cu(100)表面上的TPR/D研究………...76 4.5 2,6-dichloropyrazine 於Cu(100)和O/Cu(100)表面上的反射式吸收紅外光譜(RAIRS)研究 90 4.5.1 2,6-dichloropyrazine於Cu(100)表面上的RAIRS研究…………..90 4.5.2 2,6-dichloropyrazine於O/Cu(100)表面上的RAIRS研究………..94 第五章 結論 97 參考文獻 99

    1. Sormorjai, G., Introduction to Surface Chemistry and Catalysis. A Wiley-Interscience Press, New York 1994.
    2. Christmann, K.; Ertl, G.; Pignet, T., Adsorption of Hydrogen on a Pt(111) Surface. Surface Science 54, 365-392, 1976.
    3. Andrew, J.; Mottaram, D., Flavor Science: Recent Developments. Woodhead Publishing, Great Britain: 1996.
    4. Brown, D. J., The Pyrazines: Supplement I; John Wiley & Sons, Vol. 58, 2003.
    5. Kim, D., et al., (2R)-4-Oxo-4-[3-(Trifluoromethyl)-5,6-Dihydro[1,2,4]Triazolo[4,3-a]Pyrazin- 7(8H)-Yl]-1-(2,4,5-Trifluorophenyl)Butan-2-Amine:  A Potent, Orally Active Dipeptidyl Peptidase IV Inhibitor for the Treatment of Type 2 Diabetes. Journal of Medicinal Chemistry 48, 141-151, 2005.
    6. Chekmarev, D. S.; Shorshnev, S. V.; Stepanov, A. E.; Kasatkin, A. N., Highly Selective Substitutions in 2,3-Dichloropyrazine. A Novel General Approach to Aloisines. Tetrahedron 62, 9919-9930, 2006.
    7. Fox, M. E.; Jackson, M.; Lennon, I. C.; Klosin, J.; Abboud, K. A., Bis-(2,5-Diphenylphospholanes) with Sp2 Carbon Linkers:  Synthesis and Application in Asymmetric Hydrogenation. The Journal of Organic Chemistry 73, 775-784, 2008.
    8. Malik, I.; Hussain, M.; Ali, A.; Tengho Toguem, S.-M.; Basha, F. Z.; Fischer, C.; Langer, P., Synthesis of 2,3-Disubstituted Pyrazines and Quinoxalines by Heck Cross-Coupling Reactions of 2,3-Dichloropyrazine and 2,3-Dichloroquinoxaline. Influence of the Temperature on the Product Distribution. Tetrahedron 66, 1637-1642, 2010.
    9. Hamm, U. W.; Lazarescu, V.; Kolb, D. M., Adsorption of Pyrazine on Au(111) and Ag(111) Electrodes an Ex Situ Xps Study. Journal of the Chemical Society, Faraday Transactions 92, 3785-3790, 1996.
    10. Dudde, R.; Frank, K. H.; Rocco, M. L. M.; Koch, E. E., Adsorption Geometry and Bonding of Azimuthal-Ordered Pyrazine Overlayers on Cu(110). Surface Science 201, 469-480, 1988.
    11. Huang, H. G.; Wang, Z. H.; Xu, G. Q., The Selective Formation of Di-Σ N−Si Linkages in Pyrazine Binding on Si(111)-7 × 7. The Journal of Physical Chemistry B 108, 12560-12567, 2004.
    12. Myli, K. B.; Coon, S. R.; Grassian, V. H., Photon-Induced Reactions of Aromatics Adsorbed on Rough and Smooth Silver Surfaces. The Journal of Physical Chemistry 99, 16407-16415, 1995.
    13. King, D. A., Thermal Desorption from Metal Surfaces: A Review. Surface Science 47, 384-402, 1975.
    14. Redhead, P. A., Thermal Desorption of Gases. Vacuum 12, 203-211, 1962.
    15. Vickerman, J. C.; Gilmore, I. S., Surface Analysis: The Principal Techniques; John Wiley & Sons, 2011.
    16. 張沛騰. 2-氟乙醇及1,4-Dioxane在Cu(100)表面上的熱反應與吸附位向的研究. 國立成功大學, 台南市, 2003.
    17. Sexton, B. A., Surface Vibrations of Adsorbed Intermediates in the Reaction of Alcohols with Cu(100). Surface Science, 88, 299-318, 1979.
    18. Jakob, P.; Lloyd, D. R.; Menzel, D., Pyridine on Ru(001): Thermal Evolution. Surface Science 227, 325-336, 1990.
    19. Haines, B. M.; Gland, J. L., Thermal Dechlorination and Dehydrogenation Pathways for Ortho-, Meta-, and Para-Chlorotoluene on the Pt (1 1 1) Surface: C–Cl Bond Activation by Methyl. Surface Science 602, 1871-1876, 2008.
    20. Sexton, B. A.; Hughes, A. E., A Comparison of Weak Molecular Adsorption of Organic Molecules on Clean Copper and Platinum Surfaces. Surface Science 140, 227-248, 1984.
    21. Brosseau, R.; Brustein, M. R.; Ellis, T. H., Water Adsorption on Cu(100): The Effect of Defects. Surface Science 294, 243-250, 1993.
    22. Sueyoshi, T.; Sasaki, T.; Iwasawa, Y., Oxygen Atoms on Cu(100) Formed at 100 K, Active for Co Oxidation and Water−Hydrogen Abstraction, Characterized by HREEls and TRD. The Journal of Physical Chemistry B 101 4648-4655, 1997.
    23. Nascimento, R. X. D.;Belarmono, M. K. D. L.;Lima, N. B. D., Hydrogen Bonds between Pyrazine and RCOOH (R = -H, -CH3, and -C6H5): A Theoretical Study. International Journal of Quantum Chemistry 112, 3147-3151, 2012.
    24. H. Ellis, T.; Kruus, E.; Wang, H., Adsorption and Reaction of Water on Oxygen Precovered Cu(100) The Journal of Physical Chemistry C 11, 2117-2121, 1993.
    25. Yang, Z.-X.; Chen, S.-W.; Lee, S.-H.; Chen, T.-Y.; Lin, J.-L., Comparative Study on the Reaction Pathways of 2-Chloropropanoic Acid on Cu(100) and O/Cu(100). The Journal of Physical Chemistry C 121, 315-323, 2017.
    26. Davies, P. R.; Shukla, N., The Adsorption of Pyridine at Clean, Oxidised and Hydroxylated Cu(111) Surfaces. Surface Science 322, 8-20, 1995.
    27. Cohen, M. R.; Merrill, R. P., Adsorption of Pyridine on Nickel(111): A Hreels, Arups, and Xps Study. Langmuir 6, 1282-1288, 1990.
    28. Carley, A. F.; Chinn, M.; Parkinson, C. R., The Adsorption and Oxidation of Cyanogen on Copper Surfaces. Surface Science 537, 64-74, 2003.
    29. 吳子瑄. 2-氯乙醇在Ni(111)表面上的熱反應研究. 國立成功大學, 台南市, 2012.
    30. GUO, L.; FANG, W., Infrared, Raman and Density Functional Study of Vibration Spectra of 2, 3-Dichloropyrazine. Spectroscopy and Spectral Analysis 34, 2994-2998, 2014.
    31. Haq, S.; Laroze, S. C.; Mitchell, C.; Winterton, N.; Raval, R., 1,2dichloroethene on Cu(110): Adsorption, Dechlorination and Trimerisation Reactions. Journal of Molecular Catalysis A Chemical 305, 117-120, 2009.
    32. Hoffmann, W.; Bertel, E.; Netzer, F. P., Surface Chemistry of Cyanogen on Pt(111): Isotopic Exchange and Coadsorption with Co. Journal of Catalysis 60, 316-324, 1979.
    33. Solymosi, F.; Kiss, J., Interaction of C2N2 with Clean and Oxygen Dosed Cu(111) Surface Studied by Aes, Els and Tds Measurements. Surface Science 108, 368-380, 1981.
    34. Kadali, C.; Santhamma, C.; V. Prasad, K.; Veeraiah, V., Molecular Structure, Vibrational Spectroscopic (FT-IR, FT-Raman),Uv-Vis Spectra, First Order Hyperpolarizability, Nbo Analysis, Homo and Lumo Analysis, Thermodynamic Properties of 2,6-Dichloropyrazine by Ab Inito Hf and Density Functional Method. Journal of Atomic and Molecular Sciences 4, 1-22, 2011.
    35. Endrédi, H.; Billes, F.; Holly, S., Vibrational Spectroscopic and Quantum Chemical Study of the Chlorine Substitution of Pyrazine. Journal of Molecular Structure: THEOCHEM 633, 73-82, 2003.

    下載圖示 校內:2023-07-11公開
    校外:2023-07-11公開
    QR CODE