簡易檢索 / 詳目顯示

研究生: 康倫愷
Kang, Lun-Kai
論文名稱: 流體在 2013 年南山地震群之趨動過程
Fluid-driven processes in the 2013 Nanshan earthquake sequence
指導教授: 饒瑞鈞
Rau, Ruey-Juin
共同指導教授: 李恩瑞
Lee, En-Jui
學位類別: 碩士
Master
系所名稱: 理學院 - 地球科學系
Department of Earth Sciences
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 87
中文關鍵詞: 流體觸發地震模板搜尋地震震源機制解前震行為模型b值地下速度構造
外文關鍵詞: fluid induced events, Template Matching Algorithm, focal mechanism, foreshock behavior, velocity model
相關次數: 點閱:69下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 大地震發生之前是否有前震?如果有,這些前震是否可以告訴我們大地震的孕育過程?有關前震的行為及其與主震之間的關係,長期以來都是地震學專注的重點之一。現今用來描述前震行為主要有 cascade up, pre-slip 和 progressive localization 三個模型。2013 年 M5.87 南山地震沿西北-東南走向西傾約 45ᵒ的斷層系統發展,其具有明顯遷移行為的前震行為。然而小規模地震的缺失造成辨識其遷移行為十分困難,因此本研究透過模板搜尋配對方法改善此問題,進一步分析前震遷移行為。本研究中,除了透過 D=0.15 m^2/s 的水力擴散模型很好的說明整體前震的分布行為,大規模事件震源機制解的non-Double couple 成分、地下速度構造指出的異常高值的 Vp/Vs 區域皆指向其前震行為有流體參與觸發。儘管有流體參與了地震觸發,b 值在時間域的變化仍符合學界上所認為的大地震前會有較低的 b 值出現。pre-slip model 很好的說明了流體對前震的影響,然而在小範圍的地震活動的時空間分布與庫侖應力轉移的結果上仍可發現短時間的動態應力觸發,則可以透過 cascade up model 說明了小範圍的行為模式。結合了三種模型,綜合地震生成模型方能涵蓋了流體與應力同時作用於 2013 年南山地震群前震的行為模式。

    Despite the improvement of theory studies and the data quality, the process of formatting the large earthquake is still enigmatic. We usually use cascade-up model, pre-slip model and progressive localization model to explain the process. The 2013 M5.87 Nanshan earthquake sequence occurred in western Central Range (Taiwan), showing NW-SE striking and about 45ᵒ dipping to the west. It happened with an obvious foreshock sequence and it propagates along the strike direction. We create a M > 0.0 complete earthquake catalogue through Template Matching Algorithm, and found that the migration of foreshocks may be described by the hydraulic diffusion model. On the other hands, non-Double Couple composition in ISOLA and the anomalously high Vp/Vs shows us another confidence possibility of fluid existence. Although the fluid participated in the foreshock migration, the b-value change with time still meet the theory, b-value of the foreshocks should be lower than the mainshock and the aftershocks. Finally, the integrated earthquake generation model can easily explain the foreshocks process in the Nanshan earthquake sequence, telling us the behavior of fluid and the foreshock have no difference from the case of other countries.

    中文摘要 I 英文延伸摘要 II 致謝 VI 目錄 VII 表目錄 IX 圖目錄 X 第壹章、緒論1 1.1 研究動機與研究目的1 1.2 前人研究5 1.2.1 流體行為模型 5 1.2.2 流體遷移觸發地震 6 1.3 論文架構 9 第貳章、資料與方法 11 2.1 地震頻率與規模分布 11 2.2 中央氣象局地震目錄 13 2.3 模板配對搜尋方法 16 2.4 震源機制解解算 18 2.4.1 格林矩張量 18 2.4.2 ISOLA 19 2.5 庫侖應力變化 22 2.6 GrowClust 重新定位 23 第參章、資料處理 27 3.1 模板地震挑選 27 3.2 重新定位 28 第肆章、研究結果 29 4.1 模板地震搜尋目錄 29 4.2 地震活動遷移 33 4.2.1 前震之遷移情形 33 4.2.2 主、餘震之遷移情形 34 4.4 ISOLA 震源機制解 45 4.5 庫倫應力轉移 48 4.6 b 值變化 53 第伍章、討論 54 5.1 流體觸發地震 54 5.2 應力觸發地震 59 5.3 主震前兆 59 第陸章、結論 60 第柒章、參考文獻 61 附錄、ISOLA 結果與誤差分析 69

    中文部分
    王聆華 (2018),流體在台灣造山帶伸張孕震構造的作用機制,國立成功大學地球科學研究所碩士論文。
    陳穆申 (2003), 狹長造山帶的擠壓-伸張轉換帶過程:以台灣東部中央山脈的地震活動為例,國立成功大學地球科學研究所碩士論文。
    劉耀煒、許麗卿和楊多興(2011),龍灘水庫誘發地震的孔隙壓力擴散特征。 地球物理學報,54,1028-1037. doi: 10.3969/j.issn.0001-5733.2011.04.017.

    英文部分
    Abercrombie, R.E. (2019). Small and large earthquake can have similar starts. Nature, 573, 42-43.
    Aki, K., and P.G. Richards (2002). Quantitative Seismology.
    Aster, R.C., and R.P. Meyer (1988). Three dimensional velocity structure and hypocenter distribution in the Campi Flegrei caldera, Italy. Tectonophysics, 149, 195-248.
    Ben-Zion, Y. (1996). Stress, slip and earthquakes in models of complex single-fault system incorporating brittle and creep deformations. Journal of geophysical research, 101, 5677-5706.
    Ben-Zion, Y. (2008). Collective behavior of earthquakes and faults: continuum-discrete transitions, progressive evolutionary changes, and different dynamic regimes. Reviews of geophysics, 46, 1-70.
    Ben-Zion, Y. and I. Zaliapin, (2020). Localization and coalescence of seismicity before large earthquakes. Geophysical Journal international, 233, 561-583.
    Blanpied, M.L., D.A. Lockner, J.D. Byerlee (1992). An earthquake mechanism based on rapid sealing of faults. Nature, 358, 574-576.
    Bouchon, M. (1981). A simple method to calculate Green’s functions for elastic layered media. Bull. Seismol. Soc. Am., 71, 17-33.
    Byerlee, J. D. (1993). Model for episodic flow of high-pressure water in fault zones before earthquakes. Geology, 21, 303-306.
    Chen, X., and P.M., Shearer (2013). California foreshock sequences suggest aseismic triggering process. Geophysical Research Letters, 40, 2602-2607.
    Collettini, C., and R.H. Sibson (2001). Normal faults, normal friction? Geology, 29, 927-930.
    Coutant, O. (1989). Program of numerical simulation AXITRA. Res. Rep. LGIT (in French), Universite Joseph Fourier, Grenoble.
    Dieterich, J.H. (1992). Earthquake nucleation on faults with rate-and state-dependent strength. Tectonophysics, 211, 115-134.
    Ellsworth, W.L., and F. Bulut (2018). Nucleation of the 1999 Izmit earthquake by a triggered cascade of foreshocks. Nature Geoscience, 11, 531-535.
    Faulkner, D.R., and E.H. Rutter (2001). Can the maintenance of overpressured fluids in large strike-slip fault zones explain their apparent weakness? Geology, 29, 503-506.
    Faulkner, D.R., T.M. Mitchell, D. Healy, and M.J. Heap (2006). Slip on'weak'faults by the rotation of regional stress in the fracture damage zone. Nature, 444, 922-925.
    Fojtíková, L., Vavryčuk, V., Cipciar, A., & Madarás, J. (2010). Focal mechanisms of microearthquakes in the Dobrá Voda seismoactive area in the Malé Karpaty Mts.(Little Carpathians), Slovakia. Tectonophysics, 492, 213-229.
    Fukao, Y. and M. Furumoto (1985). Hierarchy in earthquake size distribution, Physics of the Earth and Planetary Interiors. 37, 149-168.
    Gibbons, S.J., and F. Ringdal (2006). The detection of low magnitude seismic events using array-based waveform correlation. Geophys. J. Int., 165, 149-166.
    Gomberg, J. (2018). Unsettled earthquake nucleation. Nature Geoscience, 11, 463-464.
    Gratier, J. P., P. Favreau, and F. Renard (2003). Modeling fluid transfer along California faults when integrating pressure solution crack sealing and compaction processes. Journal of Geophysical Research: Solid Earth, 108.
    Grigoli, F., S. Cesca, A.P. Rinaldi, A. Manconi, J.A. Lopez-Comino, J.F. Clinton, R. Westaway, C. Cauzzi, T. Dahm, and S. Wiemer (2018). The November 2017 Mw 5.5 Pohang earthquake: A possible case of induced seismicity in South Korea. Science, 360, 1003-1006.
    Guidarelli, M., A. Sarao, and G.F. Panza (2002). Surface wave tomography and seismic source studies at Campi Flegrei (Italy). Physics of the Earth and Planetary Interiors, 134, 157-173.
    Gutenberg, B., & Richter, C. F. (1944). Frequency of earthquakes in California. Bulletin of the Seismological society of America, 34, 185-188.
    Henry, C., & Das, S. (2002). The Mw 8.2, 17 February 1996 Biak, Indonesia, earthquake: Rupture history, aftershocks, and fault plane properties. Journal of Geophysical Research: Solid Earth, 107, ESE-11.
    Huang, H.H., Y.M. Wu, X.D. Song, C.H. Chang, S.J. Lee, T.M. Chang, H.H Hsieh (2014). Joint Vp and Vs tomography of Taiwan: Implications for subduction-collision orogeny. Earth and Planetary Science Letters, 392, 177-191.
    Ishimoto, M., and K. Iida (1939). Observations of earthquakes registered with the microseismograph constructed recently. Bull. Earthquake Res. Inst., 17, 443-478.
    Kato, A. and Y. Ben-Zion (2021). The generation of large earthquake. Nature Reviews Earth & Environment, 2, 160.
    Kikuchi M., and H. Kanamori (1991). Inversion of complex body waves-III. Bulletin of the Seismological Society of America, 81, 2335-2350.
    King, G. C., Stein, R. S., & Lin, J. (1994). Static stress changes and the triggering of earthquakes. Bulletin of the Seismological Society of America, 84(3), 935-953.
    Leclère, H., O. Fabbri, G. Daniel, and F. Cappa (2012). Reactivation of a strike-slip fault by fluid overpressuring in the southwestern French-Italian Alps. Geophysical Journal International, 189, 29-37.
    Lees, J.M., and R.S. Crosson (1989). Tomographic inversion for three-dimensional velocity structure at Mount St. Hellens using earthquake data. Geophys. Res., 94, 5716-5728.
    Lee, E. J., D. Mu, W. Wang, and P. Chen (2020). Weighted Template‐Matching Algorithm (WTMA) for Improved Foreshock Detection of the 2019 Ridgecrest Earthquake Sequence. Bulletin of the Seismological Society of America, 110, 1832-1844.
    Legrand, D., S. Kaneshima, and H. Kawakatsu (2000). Moment tensor analysis of nearfield broadband waveforms observed at Aso Volcano, Japan. Journal of volcanology and geothermal research, 101, 155-169.
    Lin, J. and R.S. Stein (2004). Stress triggering in thrust and subduction earthquakes, and stress interaction between the southern San Andreas and nearby thrust and strike-slip faults. Journal of Geophysical Research, 109, B02303.
    Lockner, D., J.D. Byerlee, V. Kuksenko, A. Ponomarev, and A. Sidorin (1991). Quasi-static fault growth and shear fracture energy in granite. Nature, 350, 39-42.
    Luccio, F.D, G. Ventura, R.D. Giovambattista, A. Piscini, and F.R. Cinti (2010). Normal faults and thrusts reactivated by deep fluids: The 6 April 2009 Mw 6.3 L’Aquila earthquake, central Italy. Journal of Geophysical Research, 115, B06315.
    Lyakhovsky, V., Z.E. Reches, R. Weinberger, and T.E. Scott. (1997). Non-linear elastic behaviour of damaged rocks. Geophysical Journal International, 130, 157-166.
    Mittempergher, S., G. Pennacchioni, and G. Di Toro (2009). The effects of fault orientation and fluid infiltration on fault rock assemblages at seismogenic depths. Journal of Structural Geology, 31, 1511-1524.
    Moos, D., and M.D. Zoback (1983). In situ studies of velocity in fractured crystalline rocks. Journal of Geophysical Research: Solid Earth, 88, 2345-2358.
    Mu, D., E.J. Lee, and P. Chen (2017). Rapid earthquake detection through GPU-Based template matching. Computer and Geosciences, 109, 305-314.
    Nur, A., and J.R. Booker, (1972). Aftershocks caused by pore fluid flow? Science, 175, 885-887.
    Ohnaka, M. (2000). A physical scaling relation between the size of an earthquake and its nucleation zone size. Pure and Applied Geophysics, 157, 2259-2282.
    Papazachos, B.C., 1975. Foreshocks and earthquake prediction. Tectonophysics, 28: 213-226.
    Parotidis, M., E. Rothert, & S.A. Shapiro (2003). Pore‐pressure diffusion: A possible triggering mechanism for the earthquake swarms 2000 in Vogtland/NW‐Bohemia, central Europe. Geophysical Research Letters, 30.
    Peng, Z., and J. Gomberg (2010). An integrated perspective of the continuum between earthquakes and slow-slip phenomena. Nat. Geosci., 3, 599-607.
    Peng, Z., and P. Zhao (2009). Migration of early aftershocks following the 2004 Parkfield earthquake. Nat. Geosci., 2, 877-881.
    Reches Z., and D.A. Lockner (1994). Nucleation and growth of faults in brittle rocks. Journal of Geophysical Research: Solid Earth, 99, 18159-18173.
    Rice, J.R. (1992). Fault stress states, pore pressure distributions, and the weakness of the San Andreas fault. International Geophysics, 51, 475-503.
    Ross, Z.E., C. Rollins, E.S. Cochran, E. Hauksson, J.-P. Avouac, and Y. Ben-Zion (2017). Aftershocks driven by afterslip and fluid pressure sweeping through a fault-fracture mesh. Geophys. Res. Lett., 44, 8260–8267.
    Sarao, A., G. F. Panza, E. Privitera, and O. Cocina (2001). Non-double-couple mechanisms in the seismicity preceding the 1991–1993 Etna volcano eruption. Geophysical Journal International, 145, 319-335.
    Shapiro, S.A., and C. Dinske (2009). Fluid-induced seismicity: Preddure diffusion and hydraulic fractureing. Geophysical Prospecting, 57, 301-310.
    Shapiro, S.A., E. Huenges, and G. Borm (1997). Estimating the crust permeability from fluid-injection-induced seismic emission at the KTB site. Geophysics, 69, No.5, 1338-1350.
    Shelly, D.R., G.C. Beroza, and S. Ide (2007). Non-volcanic termor and low-frequency earthquake swarms. Nature, 446, 305-307.
    Sibson, R.H. (1990). Conditions for fault-valve behaviour. Geological Society, London. Special Publications, 54, 15-28.
    Sibson, R.H. (1990). Rupture nucleation on unfavorably oriented faults. Bulletin of the Seismological Society of America, 80, 1580-1604.
    Simoes M., O. Beyssca, and Y.G. Chen (2012). Late Cenozoic metamorphism and mountain building in Taiwan: A review. Journal of Asian Earth Sciences, 46, 92-119.
    Skempton A.W. (1954). The pore-pressure coefficients A and B. Geotechnique, 4, 143-147.Sleep N.H., and M.L. Blanpied (1992). Creep, compaction and the ewak rheology of major faults. Nature, 359, 687-692.
    Sliver, P.G., and T.H. Jordan (1982). Optimal estimation of scalar seismic moment. Geophys. J. Roy. Astron. Soc., 70, 755-787.
    Sokos, E., and J. Zahradník (2008). ISOLA a Fortran code and a Matlab GUI to perform multiple-point source inversion of seismic data. Computers & Geosciences, 34, 967-977, 2008.
    Sokos, E., and J. Zahradník (2013). Evaluating Centroid‐Moment‐Tensor Uncertainty in the New Version of ISOLA Software. Seismological Research Letters, 84, 656-665.
    Thurber, C.H. (1984). Seismic detection of the summit magma complex of Kilauea volcano, Hawaii. Science, 233, 165-167.
    Toda, S., R. S. Stein, K. Richards-Dinger and S. Bozkurt (2005). Forecasting the evolution of seismicity in southern California: Animations built on earthquake stress transfer. Journal of Geophysical Research, 110, B05S16.
    Trugman, D.T,. and M. Shearer (2017). GrowClust: a hierarchical clustering algorithm for relative earthquake relocation, with application to the Spanish Springs and Sheldon, Nevada, earthquake sequences. Seismological Research Letters, 88, 379-391.
    Well, D.L., and K.J. Coppersmith (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society of America, 84, 974-1002.
    Wiemer S. (2001). A software package to analyze seismicity: z-map. Seismological Research Letter, 72, 373-382.
    Yoon, C. E., N., Yoshimitsu, W. L., Ellsworth, and G.C. Beroza (2019) Foreshocks and mainshock nucleation of the 1999 Mw 7.1 Hector Mine, California, earthquake. Journal of Geophysical Research: Solid Earth, 124, 1569–1582.
    Yukutake, Y., H. Ito, R. Honda, M. Harada, T. Tanada, and A Yoshida (2011). Fluid‐induced swarm earthquake sequence revealed by precisely determined hypocenters and focal mechanisms in the 2009 activity at Hakone volcano, Japan. Journal of Geophysical Research: Solid Earth, 116, 11035-11043.
    Zeng, Y., M.D., Petersen, and Z.K. Shen (2018). Earthquake potential in CaliforniaNevada implied by correlation of strain rate and seismicity. Geophysical Research Letters, 45, 1778–1785.

    下載圖示 校內:2023-08-31公開
    校外:2023-08-31公開
    QR CODE