簡易檢索 / 詳目顯示

研究生: 林智中
Lin, Chih-Chung
論文名稱: 量子絕熱捷徑之比較與分析
Comparsion and Analysis of Shortcuts to Adiabaticity
指導教授: 曾碩彥
Tseng, Shuo-Yen
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 87
中文關鍵詞: 能量轉換絕熱系統絕熱捷徑微擾理論
外文關鍵詞: population transition, adiabatic transition, shortcuts to adiabaticity, perturbation theory
相關次數: 點閱:142下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在能量轉換的過程,已經被提出許多的方法,但是那麼多種方法,什麼時候應該使用什麼方法會比較好我們無從得知,在考慮不同的情況下,選擇適合的方法,讓以後的人在設計波導時能夠更加容易。首先,本論文介紹的第一種方法,主要是改良絕熱捷徑的分析,一般的絕熱系統下,要達到能量轉換必須得花很長時間,絕熱捷徑能夠將時間縮短,但卻會使得結果不夠穩定,因此我們使用的第一種方法主要是利用絕熱捷徑接近於絕熱系統,使得可以解決時間問題以及結果不穩定的狀況;第二種方法,主要是利用微擾理論探討,當我們已知有特定微擾下,可以直接將其優化,微擾理論在不同階數下精確度會不一樣,在此篇論文我們將討論到7階狀態。最終將此兩種方式的參數設計成相同型式,並且相互比較,判斷出在特定的情況下選擇較適合的優化方式。

    The population transition have a lot of method be proposed. However, how should we choose the method in different situation we don’t know. In order to let design of waveguide easier, we want to select suitable methods under distinct circumstances. In this thesis, we will introduce two different methods, optimization of adiabaticity and robustness quantum control, respectively. The common shortcut to adiabaticity(STA) can improve long time problem of adiabatic transition, but the robustness is worse. And the first method not only can improve this problem but also can improve the robustness by approaching trajectory of adiabatic. The second method major is use the perturbation theory to improve particular perturbation. We compare distinct methods in the same parameters that we can know which method is better in different situation. Let the users can choose whichever particular method they want.

    中文摘要 i Abstract ii 致謝 iii Table of Contents iv List of Figures vi Chapter 1 Introduction 1 1.1 Introduction 1 1.1.1 Adiabaticity 2 1.1.2 Shortcuts to adiabatic with Lewis-Riesenfeld invariant 3 1.1.3 Optimization of adiabaticity 4 1.1.4 Robust quantum control 5 1.2 Organization of the Thesis 6 Chapter 2 Theoretical Analysis 7 2.1 Two-level System: Rabi Oscillation 7 2.2 Lewis-Riesenfeld invariant protocol 16 2.3 Bloch sphere 20 2.4 Instantaneous and invariant eigenstates 23 2.5 Optimization of adiabaticity by using shortcut to adiabaticity 26 2.6 Robust Quantum Control by a single-shot shaped pulse 28 Chapter 3 Simulation Results and Discussion 34 3.1 Schematic of the Parameters used for Simulator 35 3.2 Robustness with respect to Rabi-frequency (Ω) compare with optimization of adiabaticity 37 3.2.1 Third-order 38 3.2.2 Fifth-order 45 3.2.3 Seventh-order 52 3.3 Another robustness compare with optimization of adiabaticity 59 3.3.1 Robustness with respect to detuning (Δ) compare with optimization of adiabaticity 60 3.3.2 Robustness with respect to Rabi-frequency (Ω) by another global phase term. 67 3.3.3 Robustness with respect to both Rabi-frequency (Ω) and detuning (Δ) compare with optimization of adiabaticity 75 Chapter 4 Conclusion and Perspectives 83 4.1 Conclusion 83 4.2 Perspectives 85 Reference 86

    1. M. V. Berry, Histories of adiabatic quantum transitions. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 429, 61-62 (1990).
    2. E. Torrontegui, S. Ibáñez, S. Martínez-Garaot, M. Modugno, A. del Campo, D. Guéry-Odelin, A. Ruschhaupt, X. Chen, and J. G. Muga, Shortcuts to adiabaticity. Adv. At. Mol. Opt. Phys. 62, 117-169 (2013).
    3. A. del Campo, Shortcuts to adiabaticity by counterdiabatic driving. Phys. Rev. Lett. 111, 100502 (2013).
    4. B. T. Torosov, G. Della Valle, and S. Longhi, Non-Hermitian shortcut to adiabaticity. Phys. Rev. A 87, 052502 (2013).
    5. David H. Mcintyre, Quantum Mechanics. Chapter 3 pp68~96
    6. N. V. Vitanov, T. Halfmann, B. W. Shore, and K. Bergmann, Laser-induced population transfer by adiabatic passage techniques. Annual Review of Physical Chemistry. 52(1): p. 763-809 (2001).
    7. K. Bergmann, H. Theuer, and B. W. Shore, Coherent population transfer among quantum states of atoms and molecules. Reviews of Modern Physics. 70(3): p. 1003-1025(1998)
    8. M. Born, and V. Fock, “Beweis des adiabatensatzes. Zeitschrift fu ̈r Phys. ” 51, 165-180 (1928).
    9. H. R. Lewis Jr, and W. B. Riesenfeld, An exact quantum theory of the time‐dependent harmonic oscillator and of a charged particle in a time‐dependent electromagnetic field. J. Math. Phys. 10, 1458-1473 (1969).
    10. C.-P. Ho, and S.-Y Tseng, Optimization of adiabaticity in coupled-waveguide devices using shortcuts to adiabaticity, Optics letters, 2015, 40, pp. 4831-4834
    11. D. Daems, A. Ruschhaupt, D. Sugny, and S. Guérin, Robust quantum control by a single-shot shaped pulse, Physical review letters, 2013, 111, pp. 050404
    12. M. Ndong, G. Djotyan, A. Ruschhaupt, S. and Guérin, Robust coherent superposition of states by single-shot shaped pulse, Journal of Physics B: Atomic, Molecular and Optical Physics, 2015, 48, pp. 174007
    13. A. Ruschhaupt, X. Chen, D. Alonso, and J. Muga, Optimally robust shortcuts to population inversion in two-level quantum systems, New Journal of Physics, 2012, 14, pp. 093040
    14. S.-Y. Tseng, Robust coupled-waveguide devices using shortcuts to adiabaticity, Optics letters, 2014, 39, pp. 6600-6603
    15. Y. Ma, P. Magill, T. Baehr-Jones, and M. Hochberg, Design and optimization of a novel silicon-on-insulator wavelength diplexer, Optics express, 2014, 22, pp. 21521-21528
    16. S.-Y. Tseng, R.-D. Wen, Y.-F. Chiu, and X. Chen, Short and robust directional couplers designed by shortcuts to adiabaticity, Optics express, 2014, 22, pp. 18849-18859
    17. A. Ruschhaupt, and J. Muga, Shortcuts to adiabaticity in two-level systems: control and optimization, Journal of Modern Optics, 2014, 61, pp. 828-832
    18. X.-J. Lu, X. Chen, A. Ruschhaupt, D. Alonso, S. Guérin, and J. Muga, Fast and robust population transfer in two-level quantum systems with dephasing noise and/or systematic frequency errors, Physical Review A, 2013, 88, pp. 033406

    下載圖示 校內:2021-01-01公開
    校外:2021-01-01公開
    QR CODE