簡易檢索 / 詳目顯示

研究生: 黃紹崴
Huang, Shao-Wei
論文名稱: 基於光學色散調控之多光子時域聚焦顯微術開發
Development of Multiphoton Temporal Focusing Microscopy based on Optical Dispersion Manipulation
指導教授: 張家源
Chang, Chia-Yuan
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 100
中文關鍵詞: 多光子激發螢光顯微術光學色散頻域光學解析開關時域聚焦多光子顯微術空間光調變器
外文關鍵詞: multiphoton excitation fluorescence microscopy, optical dispersion, frequency-resolved optical gating, temporal focusing-based multiphoton microscopy, spatial light modulator
相關次數: 點閱:160下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 非線性多光子激發螢光顯微術,在搭配高數值孔徑(numerical aperture,NA)與超快雷射能夠讓脈衝能量集中於聚焦空間上,形成高能量密度的電場,但由於雷射脈衝在經過光學元件如透鏡、菱鏡等會產生色散的現象,導致脈衝的寬度變寬,使瞬時能量分散而降低激發樣品的效率,其中光學色散的二階項(group delay dispersion,GDD)對色散影響是最為明顯,本文實驗的系統中,著重於脈衝測量與脈衝壓縮系統的設計,與基於先前實驗室建立的多光子激發螢光顯微術(multiphoton excited fluorescence microscopy,MPEFM)中應用,實現掃描樣品同時補償脈衝的相位變化使激發效率有所提升,基於先前系統技術下,開發結合飛秒雷射發展具有廣視域激發能力的時域聚焦多光子顯微術(temporal focusing-based multiphoton microscopy,TFMPM)。
    本文主要論述關於脈衝量測系統如干涉式自相關儀(interferometric autocorrelation,FRAC)、頻域光學解析開關(frequency resolved optical gating,FROG)等測量雷射相位或脈衝資訊等,再經實驗室演算法如DOES(direct optical-dispersion estimation by spectrogram)後計算脈衝之GDD變化,搭配PI控制器與線性可調變式聚焦鏡(linear deformable mirror,LDM)後進行脈衝補償。並在搭配飛秒級雷射下至TFMPM系統的應用,及能夠透過液態透鏡調控軸向掃描和基於壓電片實作脈衝壓縮測試,或是使用空間光調變器(spatial light modulator,SLM)可呈現光束整形之效果,與系統整合後可實現樣品之均勻度以及多種功能性整合可能。

    Ultrafast laser pulses can generate instantaneous energy in optical applications, nonlinear multiphoton excitation fluorescence microscopy to excite fluorescence without damaging the sample. However, when laser pulses pass through optical elements, they experience broadening of pulse width, leading to energy dispersion and reduced efficiency. Among the various types of dispersion, the second-order term known as group delay dispersion (GDD) has the most significant impact. In this study, the focus is on the design of the pulse measurement system and compression system, such as interferometric autocorrelation (FRAC) and frequency-resolved optical gating (FROG), combined with the previously established multiphoton excited fluorescence microscopy (MPEFM). After the technique of direct optical dispersion estimation by spectrogram (DOES), the changes in GDD of the pulse are calculated, and pulse compensation is performed using a proportional-integral (PI) controller and linear deformable mirror (LDM). By compensating for the spectral phase variations of the pulse while scanning the sample, the excitation efficiency is improved. Additionally, we have developed temporal focusing-based multiphoton microscopy (TFMPM) to achieve wide-field excitation. Meanwhile, we have developed the use of a spatial light modulator (SLM) to achieve beam shaping. The SLM allows for the manipulation and control of the spatial profile of the laser beam. And we have also tested the pulse compression performance using a piezoelectric bender. it becomes possible to improve sample uniformity and facilitate the integration of multiple functionalities.

    摘要 i Extending Abstract ii 致謝 ix 目錄 x 圖目錄 xiii 表目錄 xviii 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 2 1-3 研究動機 4 1-4 論文架構 5 第二章 雷射脈衝量測系統 6 2-1 光學時域色散 6 2-2 雷射自相關量測技術 7 2-2-1 強度式自相關 7 2-2-2 干涉式自相關 8 2-2-3 實驗結果 10 2-3 頻域解析光學閘 12 2-3-1 理論介紹 13 2-3-2 系統架構設計與測試 14 2-3-3 PCGPA重建演算法 16 2-3-4 DOES演算法 18 第三章 雷射脈衝壓縮系統 22 3-1 基於可調變式聚焦鏡之脈衝壓縮器 22 3-1-1 線性可調變式聚焦鏡規格介紹 22 3-1-2 模擬分析 23 3-2 基於空間光調變器之相位調變 26 3-2-1 空間光調變器規格介紹 27 3-2-2 相位調變校正 28 3-2-3 雷射光束整形應用 35 3-2-4 實驗結果 39 3-3 基於壓電片之色散補償系統 43 3-3-1 光路設計 43 3-3-2 實驗結果 46 3-4 基於光學色散補償之多光子顯微系統 47 3-4-1 多光子激發螢光原理 48 3-4-2 系統架構 49 3-4-3 閉迴路控制器設計 49 3-4-3-1 PI控制器 50 3-4-3-2 光學色散補償設計流程 52 3-5 實驗結果(以生物組織樣品為例) 54 3-5-1 靜態干擾修正 55 3-5-2 動態干擾修正 56 第四章 時域聚焦多光子顯微術 59 4-1 光路系統設計 59 4-1-1 理論計算 59 4-1-2 光路架構 64 4-1-3 硬體規格介紹 66 4-1-3-1 sCMOS科研相機 66 4-1-3-2 物鏡壓電平台 68 4-1-3-3 液態透鏡 68 4-2 基於COMSOL模擬之繞射光柵優化 70 4-2-1 模擬結果與驗證 71 4-2-1 最佳化繞射光柵閃耀角設計 76 4-3 實驗結果 78 4-3-1 非線性激發效率 78 4-3-2 解析度測試 79 4-3-3 樣品量測 82 第五章 結果與討論 85 5-1 結果與討論 85 5-2未來展望 86 參考文獻 87 附錄 94

    1.P. J T. Wang and C. Xu, “Three-Photon neuronal imaging in deep mouse brain,”Optica 7(8), 947-960 (2020).
    2.S. V. Plotnikov et al., “Measurement of muscle disease by quantitative second-harmonic generation imaging,” J. Biomed. Opt., 13(4), 044018 (2008).
    3.K. c Phillips, H. H. Gandhi, E Mazur, and S. K. Sundaram, “Ultrafast laser processing of materials,” Nat. Photonics 7(4), 684-712 (2015).
    4.K. Harako, M. Yoshida, T. Hirooka, and M. Nakazawa, “A 40 GHz, 770 fs regeneratively mode-locked erbium fiber laser operating at 1.6 µm,” IEICE Electron. Express 14(19), 20170829 (2017).
    5.T. Hirooka, R. Hirata, J. Wang, M. Yoshida, and M. Nakazawa, “Single-channel 10.2 Tbit/s (2.56 Tbaud) optical Nyquist pulse transmission over 300 km,” Opt. Express 26(21), 27221–27236 (2018).
    6.W. Denk, J. H. Strickler, and W. W. Webb, “Two-Photin Laser Scanning Flouorescence Microscopy,” Science. 248(4951), 73-76(1990).
    7.G. H. Zhu, J. van Howe, M. Durst, W. Zipfel, and C. Xu, “Simultaneous spatial and temporal focusing of femtosecond pulses,” Opt. Express 13, 2153–2159 (2005).
    8.M. E. Durst, G. Zhu, and C. Xu, “Simultaneous spatial and temporal focusing for axial scanning,” Opt. Express 14, 12243-12254 (2006).
    9.U. Hofmann, S. Muehlmann, M. Witt, K. Dorschel, R. Schutz, and B. Wagner,“Electrostatically driven micromirrors for a miniaturized confocal laser scanning microscope,” Proceedings of SPIE 3878, 29–38 (1999).
    10.H. P. Weber, “Method for Pulsewidth Measurement of Ultrashort Light Pulses Generated by Phase-Locked Lasers using Nonlinear Optics,” J. Appl. Phys. 38(5), 2231-2234 (1967).
    11.J. A. Armstong, “MESUREMENT OF PICOSECOND LASER PULSE WIDTHS ,” Appl. Phys. Lett. 10(1), 1618 (1967).
    12.J-C. M. Diels, J. J. Fontaine, I. C. McMichael, and F. Simoni, “Control and measurement of ultrashort pulse shapes (in amplitude and phase) with femtosecond accuracy,” Appl. Opt. 24(9), 1270-1282 (1985).
    13.J. –Ho Chung, and A. M. Weiner, “Ambiguity of Ultrashort Pulse Shapes Retrieved From the Intensity Autocorrelation and the Power Spectrum,” IEEE J. Sel. Top. Quant. Electron. 7(4), 656-666 (2001).
    14.B. Yellampalle, K. Kim, and A. J. Taylor, “Amplitude ambiguities in second-harmonic generation frequency-resolved optical gating,” Opt. Lett. 32(24), 3558-3560 (2007).
    15.R. Trebino and D. J. Kane, “Using phase retrieval to measure the intensity and phase of ultrashort pulses: frequency-resolved optical gating,” J. Opt. Soc. Am. A 10(5), 1101-1111 (1993).
    16.R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Kluwer Academic, 2002).
    17.T. Zahavy, A. Dikopoltsev, D. Moss, G. I. Haham, O. Cohen, S. Mannor, and M. Segev, “Deep learning reconstruction of ultrashort pulses.” Optica 5(5), 666-673 (2018).
    18.R. L. Fork, O. E. Martinez, and J. P. Gordon, “Negative dispersion using pairs of prisms,” Opt. Lett. 9(5) 150-152 (1984).
    19.V. Chauhan, P. Bowlan, J. Cohen, and R. Trebino, “Single-diffraction-grating and grism pulse compressors,” J. Opt. Soc Am. B 27(4) 619-624 (2010).
    20.S. Akturk, X. Gu, Kimmel, and Rick Trebino, “Extremely simple single-prism ultrashort-pulse compressor,” Opt. Express. 14(21), 10101-10108(2006).
    21.E. Zeek, K. Maginnis, S. Backus, Russek, M. Murnane, G. Mourou, H. Kapteyn, and G. Vdovin, “Pulse compression by use of deformable mirrors,” Opt. Lett. 24(7), 493-495 (1999).
    22.E. Frumker and Y. Silberberg, “Femtosecond pulse shaping using a two-dimensional liquid-crystal spatial light modulator,” Opt. Lett. 32(11), 1384-1386 (2007).
    23.Y. Esumi, MD Kabir, F. Kannari, “Spatiotemporal vector pulse shaping of femtosecond laser pulses with a multi-pass two-dimensional spatial light modulator,” Opt Express, 17(21), 19153-19159 (2009).
    24.X. Zhou, S. Jia, H. Yu, H. Zhang, and Y. Zhang, “Phase response measurement of spatial light modulators based on a Shack–Hartmann wavefront sensor,” Appl. Opt. 61(16), 4796-4801 (2022).
    25.M. E. Durst, A. Turcios, C. Laurence, and E. Moskovitz, “Dispersion compensation by a liquid lens (DisCoBALL),” Appl. Opt. 58(2), 428-435 (2019).
    26.John L. Dean and Amir H. Hirsa, “Performance of a microscope with an embedded oscillating pinned-contact liquid lens,” Appl. Opt. 54(27), 8228-8234 (2015).
    27.M. E. Durst, S. Yurak, J. Moscatelli, I. Linhares, and Rubin Vargas, “Remote focusing in a temporal focusing microscope,” OSA Continuum, 4(11), 2757-2770 (2021).
    28.J. Jiang, D. Zhang, S. Walker, C. Gu, Y. Ke, W. H. Yung, and S. C. Chen, “Fast 3-D temporal focusing microscopy using an electrically tunable lens,” Opt. Express, 23(19), 24362-24368 (2015).
    29.X. Liang, W. Hu, and Ling Fu, “Pulse compression in two-photon excitation fluorescence microscopy,” Opt. Express. 18(14), 14893-14904 (2010).
    30.D. J. Kane and R. Trebino, “Single-shot measurement of the intensity and phase of an arbitrary ultrashort pulse by using frequency-resolved optical gating,” Opt. Lett. 18(10), 823-825 (1993).
    31.J.-C. Chang, S.-Yu Chang, Yu-C. Wu, C.-Y. Chang, “Fast and direct optical dispersion estimation for ultrafast laser pulse compression,” Rev. Sci. Instrum. 92(11), 113702 (2021).
    32.J.-N Yih, Y. Y. Hu, Y. D. Sie, L.-C. Cheng, C.-H. Hsiang, and S.-J. Chen, “Temporal focusing-based multiphoton excitation microscopy via digital micromirror device,” Opt. Lett. 39(11), 3134-3137 (2014).
    33.K. Seno, K. Suzuki, N. Ooba, K. Watanabe, M. Ishii, H. Ono, and S. Mino, “Demonstration of channelized tunable optical dispersion compensator based on arrayed-waveguide grating and liquid crystal on silicon,” Opt. Express 18, 18565–18579 (2010).
    34.A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, “Programmable femtosecond pulse shaping by use of a multielement liquid-crystal phase modulator,” Opt. Lett. 15, 326–328 (1990).
    35.Y. Dai, J. Antonello, and M. J. Booth, “Calibration of phase-only spatial light modulator for both phase and retardance modulation,” Opt.Express 27(13), 17912-17926 (2019).
    36.A. R. de la Cruz, A. Ferrer, W. Gawelda, D. Puerto, M. G. Sosa, J. Siegel, and J. Solis, “Independent control of beam astigmatism and ellipticity using a SLM for fs-laser waveguide writing,” Opt. Express 17(23), 20853-20859 (2009).
    37.H. Ma, P. Zhou, X. Wang, Y. Ma, F. Xi, X. Xu,and Z. Liu, “Near-diffraction-limited annular flattop beam shaping with dual phase only liquid crystal spatial light modulators,” Opt. Express 18(8), 8251-8260 (2010).
    38.E. Ronzitti, M. Guillon, V. d. Sars, and V. Emiliani, “LcoS nematic SLM characterization and modleing for diffraction efficiency optimization zero and ghost order suppression,” Opt. Express 20(16), 17843-17855 (2012).
    39.K. Lou, B. Wang, A.-Y. Jee, S. Granick, and F. Amblard, “Deep line-temporal focusing with high axial resolution and a large field-of-view using intracavity control and incoherent pulse shaping,” Opt. Lett. 43(20), 4919-4922 (2018).
    40.E. Tal, D. Oron, and Y. Silberberg, “Improved depth resolution in video-rate line-scanning multiphoton microscopy using temporal focusing,” Opt. Lett. 30, 1686–1688 (2005).
    41.Y. Yasuno, S. Makita, T. Yatagai, T. F. Wiesendanger, A. K. Ruprecht, and H. J. Tiziani, “Nonmechanically-axial-scanning confocal microscope using adaptive mirror switching,” Opt. Express 11, 54–60 (2003).
    42.Y. Zhang, L. Kong, H. Xie, X. Han, and Q. Dai, “Enhancing axial resolution and background rejection in line-scanning temperal focusing microscopy by focal modulation,” Opt. Express 26(17), 21518-21526 (2018).
    43.D. T. Reid, M. Padgett, C. McGowan, W. E.Sleat, and W. Sibbett, “Light emitting diodes as measurement devices for femtosecond laser pulses,” Opt. Lett. 22(4), 233-235(1997).
    44.J.-C. Chang, S.-Yu Chang, Yu-C. Wu, C.-Y. Chang, “Fast and direct optical dispersion estimation for ultrafast laser pulse compression,” Rev. Sci. Instrum. 92(11), 113702 (2021).
    45.D. J. Kane, “Recent progress toward real-time measurement of ultrashort laser pulses,” IEEE J. Quantum Electron. 35(4), 421-431 (1999).
    46.R. Chaudhuri, A. Wansha, R. P. Aguilar, and J. P. Rolland, “Implementation of a null test for freeform optics using a high-definition spatial light modulator,” Opt Express 30(24), 43938-43960 (2022).
    47.Yariv and P. Yeh, “Optical Waves in Crystals”, John Wiley & Sons, New York (1983).
    48.Edmund, Broadband VIS 2X – 8X Research-Grade Variable from:
    https://www.edmundoptics.com/p/broadband-vis-2x-8x-variable-beam-expander/29939/
    49.S. D. Bañasa, E. Separa, J. Engay, and Glückstadab, “Point spread function shaping using geometric analysis,” Opt. Commun. 427(15), 522-527 (2018).
    50.Holoeye, PLUTO2.1 Manual-V4, from:
    https://holoeye.com/slm-pluto-phase-only/
    51.A. Fischer, D. Stöbenar, and G. Behrends, “A lateral-scanning white-light interferometer for topography measurements on rotating objects in process environment,” CIRP Ann. 71(1), 437-770 (2022).
    52.Z. Lei, X. Liu, L. Chen, W. Lu, and S. Chang, "A novel surface recovery algorithm in white light interferometry," Measurement 80, 1-11 (2016).
    53.P. T. C. So, C. Y. Dong, B. R. Masters, and K. M. Berland, “Two-Photon Excitation Fluorescence Microscopy,” Annu. Rev. Biomed. Eng. 2, 399-429 (2000).
    54.Nonlinear optics calculator, APE (Angewandte Physik & Elektronik),from:
    https://www.ape-berlin.de/en/calculator/
    55.Hamamatsu, ORCA-Fusion BT Digital CMOS camera, C15440-20UP, from:
    https://www.hamamatsu.com/eu/en/product/cameras/cmos-cameras/C15440-20UP.html
    56.Edmund, Introduction to Liquid Lenses, from:
    https://www.edmundoptics.com.tw/knowledge-center/application-notes/imaging/introduction-to-liquid-lenses/
    57.Optotune EL-12-30-TC datasheet, from:
    https://www.optotune.com/el-12-30-tc-lens
    58.COMSOL, Application Gallery, Diffraction Grating, from:
    https://cn.comsol.com/model/diffraction-grating-19083
    59.Thorlabs, Near-IR Ruled Reflective Diffraction Grating, from:
    https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=8627
    60.IDS, specification of UI-3370 CMOS camera, from:
    https://en.ids-imaging.com/store/ui-3370cp-rev-2.html
    61.OKO Tech, specification of 39-ch linear deformable mirror for ultrafast optics, from: http://www.okotech.com/passports
    62.Coherent, specification of Chameleon Ultra series, from:
    https://www.coherent.com/lasers/oscillators/chameleon-ultra
    63.Coherent, Operator’s Manual VerdiTM V-2/V-5/V-6 Diode-Pumped Lasers, from: http://ull.tju.edu.cn/education/manual/verdi.manual_v5.pdf
    64.KMLabs, GriffinTM-Ultrafast Ti:sapphire oscillator series, from: https://www.kmlabs.com/product/griffin/
    65.HOLOEYE, PLUTO-2.1-NIR-134 Manual, from:
    https://holoeye.com/slm-pluto-phase-only/
    66.Optotune, EL-12-30-TC-VIS-16D Manual, from:
    https://www.optotune.com/el-12-30-tc-lens

    無法下載圖示 校內:2026-07-31公開
    校外:2026-07-31公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE