| 研究生: |
江宜蓁 Chiang, I-Chen |
|---|---|
| 論文名稱: |
以有機金屬法合成兼具磁性與光學特性之金屬複合奈米粒子 Synthesis of Metallic Composite Nanoparticles with Magnetic and Optical Properties via Organometallic Routes |
| 指導教授: |
陳東煌
Chen, Dong-Hwang |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 178 |
| 中文關鍵詞: | 磁性 、有機金屬法 、光學 、金屬複合奈米粒子 、自組裝 |
| 外文關鍵詞: | self-assemble, metallic composite nanoparticle, optical, magnetic, organometallic routes |
| 相關次數: | 點閱:64 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文係有關以有機金屬法製備兼具磁性與光學特性之金屬複合奈米粒子的研究,探討合成條件對粒徑、結構、光學、及磁性的影響,共包括鐵金合金、鐵金核殼、及鎳金合金奈米粒子等三個系統。
關於鐵金合金奈米粒子的合成,係以油酸及油胺為保護劑,於高溫下熱裂解五羰鐵及還原醋酸金而達成。結果發現,當體心立方結構的鐵併入金的成份後會轉變為面心立方的結構,隨反應時間及溫度的增加,其粒徑會減小且特性吸收峰變為較寬,粒徑大小亦隨組成而改變。吸收峰位置因金的組成增加而呈現紅位移的現象,或因增長反應時間而呈現藍位移。此外,隨著金的組成增加,交換偏移場消失溫度(TB)及矯頑磁力隨之增加,而飽和磁化量則會降低,利用外加磁場可將粒子磁自組為平行線。在高濃度保護劑及Au/Fe = 0.25之前驅物比例的條件下,可製得鐵金異質二聚體奈米粒子,反應過程中金奈米粒子會先形成,接著鐵奈米粒子異相成長在金粒子上。由HR-TEM及XRD的分析,鐵奈米粒子幾乎無氧化的現象。此外,由於金粒子與鐵粒子結合的關係,其特性吸收峰的強度較金奈米粒子低。
關於鐵金核殼型奈米粒子的合成,係先將五羰鐵裂解為鐵作為晶種,再以醋酸金在鐵粒子表面生成金殼而達成。依被覆次數可製得不同厚度之粒子,且因電漿表面共振的關係,UV-vis吸收光譜在520 nm位置呈現特性吸收峰。此外,粒子可自組裝為二維及三維之超晶格結構,愈靠近自組裝結構的中心,粒子排列愈緻密,而形成不同超晶格結構的變化,由外圍二維單層hcp結構轉變為三維雙層hcp結構,再轉變成三維六方緊密堆積。此外,可利用乙硫醇酸進行相轉移,使疏水性之粒子轉變成親水性。
關於鎳金合金奈米粒子的合成,係以油酸及油胺為保護劑,於高溫下共還原二酮化鎳及醋酸金而達成。結果顯示,二酮化鎳在反應溫度低於200C時無法還原生成鎳奈米粒子,但藉由金核可加速其還原速率,而形成鎳金合金奈米粒子,其結構為面心立方。表面電漿共振吸收值隨金的組成及反應時間的增加而增強,而粒徑因醋酸金濃度增加而持續成長,但過度的時間反應會使粒子的原子重組而導致粒徑變小。當反應溫度高於200C時,二酮化鎳可自行還原而不需金核的輔助,由於反應過程中,有更多的鎳原子參與形成鎳金合金奈米粒子,其粒徑及表面電漿共振吸收值因而減小。
This dissertation concerns the preparation of metallic composite nanoparticles with magnetic and optical properties via organometallic routes. The effects of preparation conditions on the particle size, structure, and optical and magnetic properties were investigated. Three systems were studied, including FeAu alloy, Fe-Au core-shell, and NiAu alloy nanoparticles.
FeAu alloy nanoparticles were synthesized via thermal decomposition of iron pentacarbonyl and reduction of gold acetate in the presence of stabilizers oleic acid and oleylamine. It was found that the incorporation of Au into Fe nanoparticles led to a structural change from body-centered cubic (bcc) to face-centered-cubic (fcc). The size of particles decreased with increasing the reaction time and temperature, and varied with the Au/Fe molar ratio. Their characteristic absorption bands became broader with decreasing the Au/Fe molar ratio or increasing reaction time and temperature. Also, they were red-shifted with decreasing the Au content and blue-shifted with increasing reaction time. In addition, with the increase in the Au/Fe molar ratio, their block temperature and coercivity increased while the saturation magnetization decreased. They could be self-assembled into parallel stripes in the direction of an applied magnetic field. FeAu heterodimer nanoparticles could be synthesized at a high stabilizer concentration with Au/Fe = 0.25 through the reaction the nucleation of gold seeds and the subsequent heterogeneous growth of iron. By the analyses of HRTEM and the XRD, the iron nanoparticles were almost not to be oxidized. As compared with gold nanoparticles, it shows weak characteristic absorption band due to its contact with iron.
The synthesis of Fe-Au core-shell nanoparticles were achieved by the thermal decomposition of iron pentacarbonyl and the followed reduction of gold acetate. The resultant nanoparticles were nearly monodisperse with a complete core-shell structure and the shell thickness could be tuned via the seed-mediated growth. Also, they exhibited an absorption band at 520 nm owing to the surface plasmon resonance of Au shells. Noteworthily, the Fe-Au core-shell nanoparticles could self-assemble into 2D and 3D superlattices. The packing density increased while approaching to the center of assembly, leading to the variation of superstructures from a 2D nearly hcp monolayer to a 3D hcp superlattice and a 3D hexagonal superlattice. Moreover, hydrophilic Fe-Au core-shell nanoparticles could be obtained by surface modification with mercaptoacetic acid via a phase transfer route.
NiAu nanoparticles were synthesized via the co-reduction of nickel 2,4-pentanedionate and gold acetate. It was found that, at temperatures below 200C, pure Ni nanoparticles could not be synthesized alone but Au nuclei might promote the reduction of nickel 2,4-pentanedionate to form NiAu nanoparticles. The resultant NiAu nanoparticles were face-centered cubic (fcc) structure. The surface plasmon absorption increased with increasing Au content and reaction time. Their mean diameters decreased with increasing the Au content in the feed solution, while became larger first owing to the particle growth and then decreased due to the atom rearrangement with increasing the reaction time. When reaction temperature was above 200C, the reduction of nickel 2,4-pentanedionate might occur without the assistance of Au nuclei. The particle size and surface plasmon absorption decreased due to the formation of nuclei at the beginning of reaction and the participation of more Ni atoms.
1. Feynman, R. P. (1960) A lecture in engineering and science. In California Institute of Technology February edn.
2. 蘇品書 譯 (1989) 超微粒子材料技術,臺南:復漢。
3. 張志焜,崔作林 (2000) 納米技術與納米材料,北京:國防工業。
4. 張立德 (2000) 奈米材料,北京:化學工業。
5. 張立德,牟季美 (2001) 奈米材料和奈米結構,北京:科學。
6. http://www.sc.doe.gov/production/bes/scale_of_things.html
7. 王崇人 (2002) 科學發展,6,354。
8. 郭正次,朝春光 (2004) 奈米結構材料科學,臺北:全華。
9. Klabunde, K. J. (2001) Introduction to Nanotechnology. In: Klabunde, K. J., ed. Nanoscale Materials in Chemistry. New York:Wiley, 1.
10. 工研院工業材料研究所 (2001) 2001材料奈米技術專刊,臺北:經濟部技術處。
11. Schmid, G. (2001) Metals. In:Klabunde, K. J., ed. Nanoscale Materials in Chemistry. New York:Wiley, 59.
12. 尹邦耀 (2002) 奈米時代,臺北:五南。
13. 廖敏宏 (2002) 磁性奈米載體在生物觸媒和生化分離之應用,國立成功大學化學工程研究所博士論文。
14. 馬振基 (2004) 奈米材料科技—原理與應用,臺北:全華。
15. Freeman, R. G.; Hommer, M. B.; Grabar, K. C.; Jackson, M. A.; Natan, M. J. (1996) J. Phys. Chem. 100, 718.
16. Michaels, A. M.; Jiang, J.; Brus, L. (2000) J. Phys. Chem. B 104, 11965.
17. Felidj, N.; Aubard, J.; Levi. G.; Krenn, J. R.; Hohenau, A.; Schider, G.; Leitner, A.; Aussenegg, F. R. (2003) Appl. Phys. Lett. 82, 3095.
18. Lu, L. H.; Zhang, H. J.; Sun, G. Y.; Xi, S. Q.; Wang, H. S.; Li, X. L.; Wang, X.; Zhao, B. (2003) Langmuir 19, 9490.
19. Mandal, M.; Jana, N. R.; Kundu, S.; Ghosh, S. K.; Panigrahi, M.; Pal, T. (2004) J. Nanoparticle Res. 6, 53.
20. Harrison, M. T.; Kershaw, S. V.; Burt, M. G.; Rogach, A. L.; Kornowski, A.; Eychmüller, A.; Weller, H. (2000) Pure Appl. Chem. 72, 295.
21. Han, M.; Gao, X.; Su, J. Z.; Nie, S. (2001) Nat. Biotechnol. 19, 631.
22. Alamri, S. N.; Brinkman, A. W. (2000) J. Phys. D: Appl. Phys. 33, L1.
23. Gao, X.; Cui, Y.; Levenson, R. M.; Chung, L. W. K.; Nie, S. (2004) Nat. Biotechnol. 22, 969.
24. Haram, S. K.; Quinn, B. M.; Bard, A. J. (2001) J. Am. Chem. Soc. 123, 8860.
25. Hickey, S. G.; J. Riley, D.; Tull, E. J. (2000) J. Phys. Chem. B 104, 7623.
26. Parak, W. J.; Gerion, D.; Zanchet, D.; Woerz, A. S.; Pellegrino, T.; Micheel, C.; Williams, S. C.; Seitz, M.; Bruehl, R. E.; Bryant, Z.; Bustamante, C.; Bertozzi, C. R.; Alivisatos, A. P. (2002) Chem. Mater. 14, 2113.
27. Edelstein, A. S.; Cammarata, R. C. (1996) Nanomaterials: Synthesis, Properties and Applications. Bristol: Institute of Physics Publishing.
28. 吳國卿,董玉蘭 (1999) 奈米粒子材料的觸媒性質,化工資訊 5月:42。
29. 黃德歡 (2002) 改變世界的奈米技術,臺北:瀛舟。
30. 莊萬發 (1998) 超微粒子理論應用,臺南:復漢。
31. 史宗淮 (1995) 微粉製程技術簡介,化工,42,28。
32. Siegel, R. W.; Hu, E.; Roco, M. C. (1999) WTEC panel report on nanostructure science and technology:R&D status and trends in nanoparticles, nanostructured materials, and nanodevices. Boston:Kluwer Academic.
33. 林景正,賴宏仁 (1999) 奈米材料技術與發展趨勢,工業材料,153,95.
34. 馬遠榮 (2002) 奈米科技,臺北:商周。
35. Toshima, N.; Yonezawa, T. (1998) New. J. Chem. 1179.
36. 黃淑娟 (2002) 化工資訊月刊 16,4,34。
37. 吳思翰 (2004) 金屬及金屬核殼型複合奈米粒子之製備,國立成功大學化學工程研究所博士論文。
38. Sugimoto, T. (1987) Adv. Colloid Interface Sci. 28, 65.
39. Hunter, R. J. (1999) Foundations of Colloid Science Vol. 1, Oxford, New York, 452.
40. Ayyappan, S.; Gopalan, R. S.; Subbanna, G. N.; Rao, C. N. R. (1997) J. Mater. Res. 12, 398.
41. Zhang, Z.; Zhao, B.; Hu, L. (1996) J. Solid State Chem. 121, 105.
42. Teranishi, T.; Nakata, K.; Miyake, M.; Toshima, N. (1996) Chem. Lett. 4, 277.
43. Li, X.; Lu, G.; Li, S. (1996) J. Mater. Sci. Lett. 15, 397.
44. Lee, J.; Isobe, T.; Senna, M. (1996) J. Colloid Interface Sci. 177, 490.
45. Ishizuki, N.; Torigoe, N.; Esumi, K.; Meguro, K. (1991) Colloids and Surfaces 55, 15.
46. Osseo-Asare, K.; Arriagada, F. J. (1990) Ceram. Trans. 12, 3.
47. Meyer, M.; Wallberg, C.; Kurihara, K.; Fendler, J. H. (1984) J. Chem. Soc. Chem. Commun. 90.
48. Fendler, J. H. (1987) Chem. Rev. 87, 877.
49. Kitahara, A.; Kazuhiko, K.; Kijiro, K. (1988) J. Colloid Interface Sci. 122, 78.
50. Osseo-Asare, K.; Arriagada, F. J. (1990) Colloids and surfaces 50, 321.
51. Sarathy, K. V.; Kulkarni, G. U.; Rao, C. N. R. (1997) Chem. Commun. 537.
52. Yonezawa, T.; Tominaga, T.; Richard, D. (1996) J. Chem. Soc. Dalton Trans. 783.
53. Reetz, M. T.; Winter, M.; Tesche, B. (1997) Chem. Commun. 535.
54. Haruta, M.; Daté, M. (2001) Appl. Catal. A 222, 427.
55. Valden, M.; Lai, X.; Goodman, D. W. (1998) Science 281, 1647.
56. Challener, W. A.; Ollman, R. R.; Kam, K. K. (1999) Sens. & Actuators 56, 254.
57. 郭清癸,黃俊傑,牟中原 (2001) 金屬奈米粒子的製造,物理雙月刊,23(6),614。
58. 柯揚船,皮特斯壯 (2004) 聚合物-無機奈米複合材料,臺北:五南。
59. Langmuir, I. (1916) J. Am. Chem. Soc. 38, 2221.
60. Blodgett, K. B. (1934) J. Am. Chem. Soc. 56, 495.
61. Iler, R. K. (1966) J. Colloid Interface Sci. 21, 569.
62. Decher, G.; Hong, J. D.; Schmitt, J. (1992) Thin Solid Films 210/211, 831.
63. 吳建成,陳東煌 (2005) 逐層自組裝奈米結構多層膜,化工資訊與商情 3月,64。
64. Morriss, R. H.; Collins, L. F. (1964) J. Chem. Phys. 41, 3357.
65. Zhu, J.; Wang, Y. C.; Huang, L. Q.; Lu, Y. M. (2004) Phys. Lett. A 323, 455.
66. Mulvaney, P.; Giersig, M.; Henglein, A. (1993) J. Phys. Chem. 97, 7061.
67. Henglein, A.; Giersig, M. (1994) J. Phys. Chem. 98, 6931.
68. Henglein, A.; Mulvaney, P.; Holzwarth, A.; Sosebee, T. E.; Fojtik, A. (1992) Ber. Bunsenges. Phys. Chem. 96, 754.
69. Henglein, A.; Holzwarth, A.; Mulvaney, P. (1992) J. Phys. Chem. 96, 8700.
70. Henglein, A.; Mulvaney, P.; Holzwarth, A. (1992) J. Phys. Chem. 96, 2411.
71. Rivas, L.; Sánchez-Cortes, S.; García-Ramos, J. V.; Morcillo, G. (2000) Langmuir 16, 9722.
72. Rivas, J.; Sánchez, R. D.; Fondado, A.; Izco, C.; García-Bastida, A. J. ; García-Otero, J.; Mira, J.; Baldomir, D.; González, A.; Lado, I.; López-Quintela, M. A.; Oseroff, S. B. (1994) J. Appl. Phys. 76, 6564.
73. Carpenter, E. E. ; Sangregorio, C.; O’Connor, C. J. (1999) IEEE Trans. Magn. 35, 3496.
74. Zhang, D.; Glavee, G.; Klabunde, K. J.; Hadjipanayis, G. C.; Sorensen, C. M. (1997) High Temp. Mater. Sci. 36, 93.
75. Sumiyama, K.; Hihara, T.; Peng, D. L.; Katoh, R. (2005) Sci. Technol. Adv. Mater. 6, 18.
76. You, C. Y.; Yang, Z. Q.; Xiao, Q. F.; Skorvanek, I.; Kovac, J.; Li, Z. J.; Liu, W.; Zhang, Z. D. (2004) Eur. Phys. J. Appl. Phys. 28, 73.
77. 劉雪寧,楊治中 (1999) 納米複合材料的設計與應用,化學通報,62,99124。
78. 陳東煌 (2003) 複合奈米粒子,化工資訊與商情,3,58。
79. 陳東煌 (2003) 複合奈米粒子的製備與應用,化工技術,120,180。
80. Schärtl, W. (2000) Adv. Mater. 12, 1899.
81. Caruso, F. (2001) Adv. Mater. 13, 11.
82. Schneider, J. J. (2001) Adv. Mater. 13, 529.
83. Zhong, C. J.; Maye, M. M. (2001) Adv. Mater. 13, 1507.
84. Chen, S.; Li, N. (2002) J. Mater. Chem. 12, 1124.
85. Audebert, P.; Sadki, S.; Miomandre, F.; Lanneau, G.; Frantz, R.; Durand, J. O. (2002) J. Mater. Chem. 12, 1099.
86. Dulkeith, E.; Morteani, A. C.; Niedereichholz, T.; Klar, T. A.; Feldmann, J.; Levi, S. A.; van Veggel, F. C. J. M.; Reinhoudt, D. N.; Möller, M.; Gittins, D. I. (2002) Phys. Rev. Lett. 89, 203002.
87. 葉晨聖 (2003) 金屬奈米顆粒及其應用,化工資訊與商情,5,54。
88. Kickelbick, G.; Liz-Marzán, L. M. (2004) Core-shell nanoaprticles. In: Nalwa, H. S., ed. Encyclopedia of Nanoscience and Nanotechnology. California:American Scientific Publishers, Vol. 4, pp.199-220.
89. Link, S.; Wang, Z. L.; El-Sayed, M. A., (1999) J. Phys. Chem. B 103, 3529.
90. Han, S. W.; Kim, Y.; Kim, K. (1998) J. Colloid Interface Sci. 208, 272.
91. Njoki, P. N.; Luo, J.; Wang, L. Y.; Maye, M. M.; Quaizar, H., Zhong, C. J. (2005) Langmuir 21, 1623.
92. Liang, H. P.; Guo, Y. G.; Zhang, H. M.; Hu, J. S.; Wan, L. J.; Bai, C. L. (2004) Chem. Commun. 1496.
93. Scott, R. W. J.; Sivadinarayana, C.; Wi;on, O. M.; Yan, Z.; Goodman, D. W.; Crooks, R. M. (2005) J. Am. Chem. Soc. 127, 1380.
94. Venezia, A. M.; Liotta, L. F.; Pantaleo, G.; La-Parola, V.; Deganello, G.; Beck, A.; Koppany, Z.; Frey, K. ; Horvath, D.; Guczi, L. (2003) Appl. Catal. A 251, 359.
95. Zhang, X.; Chan, K. Y. (2003) Chem. Mater. 15, 451.
96. Heemeier, M.; Carlsson, A. F.; Naschitzki, M.; Schmal, M.; Baumer, M.; Freund, H. J. (2002) Angew. Chem., Int. Ed. 41, 4073.
97. Nagaveni, K.; Gayen, A.; Subbanna, G. N.; Hegde, M. S. (2002) J. Mater. Chem. 12, 4073.
98. Lu, P.; Teranishi, T.; Asakura, K.; Miyake, M.; Toshima, N. (1999) J. Phys. Chem. B 103, 9673.
99. Cho, S. J.; Ryoo, R. (2001) J. Phys. Chem. B 105, 1293.
100. Chu, H. C.; Sheen, S. R.; Yeh, C. T.; Perng, T. P. (2001) J. Alloy. Compd. 322, 198.
101. Toshima, N.; Wang, Y. (1994) Langmuir 10, 4574.
102. Toshima, N; Harada, M.; Yamazaki, Y.; Asakura, K. (1992) J. Phys. Chem. 96, 9927.
103. Toshima, N.; Shiraishi, Y.; Shiotsuki, A.; Ikenaga, D.; Wang, Y. (2001) Eur. Phys. J. D 16, 209.
104. Okitsu, K.; Murakami, M.; Tanabe, S.; Matsumoto, H. (2000) Chem. Lett. 11, 1336.
105. Mizukoshi, Y.; Okitsu, K.; Maeda, Y.; Yamamoto, T. A.; Oshima, R.; Nagata, Y. (1997) J. Phys. Chem. B 101, 7033.
106. Lu, L.; Wang, H.; Zhou, Y.; Xi, S.; Zhang, H.; Hu, J.; Zhao, B. (2002) Chem. Commun. 144.
107. Schierhorn, M.; Liz-Marzán, L. M. (2002) Nano Lett. 2, 13.
108. Cao, Y. W.; Jin, R.; Mirkin, C. A. (2001) J. Am. Chem. Soc. 123, 7961.
109. Henglein, A. (2000) J. Phys. Chem. B 104, 2201.
110. Katsikas, L.; Gutiérrez, M.; Henglein, A. (1996) J. Phys. Chem. 100, 11203.
111. Seip, C. T.; O’Connor, C. J. (1999) Nanostruct. Mater. 12, 183.
112. Cho, S. J.; Kauzlarich, S. M.; Olamit, J.; Liu, K.; Grandjean, F.; Rebbouh, L.; Long, G. J. (2004) J. Appl. Phys. 95, 6804.
113. Toshima, N.; Lu, P. (1996) Chem. Lett. 729.
114. Toshima, N.; Wang, Y. (1994) Adv. Mater. 6, 245.
115. Marignier, J. L.; Belloni, J.; Delcourt, M. O.; Chevalier, J. P. (1985) Nature 317, 344.
116. Sun, S.; Murray, C. B. (1999) J. Appl. Phys. 85, 4325.
117. Andres, R. P.; Bielefeld, J. D.; Henderson, J. I. (1996) Science 273, 1690.
118. Brust, M.; Walker, M.; Bethell, D. (1994) J. Chem. Soc. Chem. Commum. 801.
119. Courty, A.; Fermon, C.; Pileni, M. P. (2001) Adv. Mater. 13, 254.
120. Fink, J.; Kiely, C. J.; Bethell, D. (1998) Chem. Mater. 10, 922.
121. Park, J. I.; Kang, N, J.; Jun, Y. W. (2002) ChemPhysChem. 6, 543.
122. Shevchenko, E.; Talapin, D.; Kornowski, A. (2002) Adv. Mater. 14, 287.
123. Whetten, R. L.; Shafigullin, M. N.; Khoury, J. T. (1999) Acc. Chem. Res. 32, 397.
124. Lin, X. M.; Jaeger, H. M.; Sorensen, C. M.; Klabunde, K. J. (2001) J. Phys. Chem. B 105, 3353.
125. Klimov, V. I. (2004) Semiconductor and Metal Nanocrystals. New York: Marcel Dekker.
126. Korgel, B. A.; Fullam, S.; Connolly, S. (1998) J. Phys. Chem. B 102, 8379.
127. Connolly, S.; Fullam, S.; Korgel, B. (1998) J. Am. Chem. Soc. 120, 2969.
128. Murray, C. B.; Norris, D. J.; Bawendi, M. G. (1993) J. Am. Chem. Soc. 115, 8706.
129. Hines, M. A.; Sionnest, P. G. (1996) J . Phys. Chem. 100, 468.
130. Peng, X. G. Schlamp, M. C. Alivisatos, A. P. (1997) J. Am. Chem. Soc. 119, 7019.
131. Dabbousi, B. O.; Rodriguez-Viejo, J.; Mikulec, F. V.; Heine, J. R.; Mattoussi, H.; Ober, R.; Jensen, K. F. Bawendi, M. G. (1997) J. Phys. Chem. B 101, 9463.
132. Talapin, D. V.; Rogach, A. L.; Mekis, I. (2002) Colloids and Surface A 202, 145.
133. Chan, W. C. W.; Nie, S. M. (1998) Science 281, 2016.
134. Peng, X. (2002) Chem. Eur. J. 8, 334.
135. Yu, W. W., Peng, X. (2002) Angew. Chem. Int. Ed. 41, 2368.
136. Sun, S.; Murray, C. B.; Weller, D.; Folks, L.; Moser, A. (2000) Science 1989.
137. Shouheng, S.; Fullerton, E. E.; Weller, D.; Murray, C. B. (2001) IEEE Trans. Magn. 37, 1239.
138. Sun, S.; Anders, S.; Thomson, T.; Baglin, J. E. E.; Toney, M. F.; Hamann, H. F.; Murray, C. B.; Terris, B. D. (2003) J. Phys. Chem. B 107, 5419.
139. Elkins, K. E.; Vedantam, T. S.; Liu, J. P.; Zeng, H.; Sun, S.; Ding, Y.; Wang, Z. L. (2003) Nano Lett. 3, 1647.
140. Sun, S. (2006) Adv. Mater. 18, 393.
141. Sun, X.; Kang, S.; Harrell, J. W.; Nikles, D. E.; Dai, Z. R.; Li, J.; Wang, Z. L. (2003), J. Appl. Phys. 93, 7337.
142. Kang, S. S.; Nikles, D. E.; Harrell, J. W. (2003) J. Appl. Phys. 93, 7176.
143. Kang, S.; Jia, Z.; Nikles, D. E.; Harrell, J. W. (2003) IEEE Trans. Magn. 39, 2753.
144. Momose, S.; Kodama, H.; Uzumaki, T.; Tanaka, A. (2005) Jpn. J. Appl. Phys. Part 1 44, 1147.
145. Chen, M.; Liu, J. P.; Sun, S. (2004) J. Am. Chem. Soc. 126, 8394.
146. Shevchenko, E. V.; Talapin, D. V.; Schnablegger, H.; Kornowski, A.; Festin, Ö.; Svedlindh, P.; Haase, M.; Weller, H. (2003) J. Am. Chem. Soc.125, 9090.
147. Park, J.; Cheon, J. (2001) J. Am. Chem. Soc. 123, 5743.
148. Levin, I.; Ott, E. (1932) J. Am. Chem. Soc. 54, 828.
149. Darragh, P, J.; Gaskin, A. J.; Terrell, B. C.; Sanders, J. V. (1966) Nature 209, 13.
150. Sanders, J. V. (1980) Phil. Mag. A 42, 704.
151. Raman, C. V.; Jayaraman, A. (1953) Proc. Indian Acad. Sci. 38A, 343.
152. http://www.lostseaopals.com.au/index.asp
153. Schmid, G.; Lehnert, A. (1989) Angew. Chem. Int. Ed. Engl. 28, 780.
154. Bentzon, M. D.; van Wonterghem, J.; Morup, S.; Tholen, A.; Koch, C. J. W. (1989) Phil. Mag. B 60, 169.
155. Sun, S.; Anders, S.; Hamann, H. F.; Thiele, J. U.; Baglin, J. E. E.; Thomson, T.; Fullerton, E. E.; Murray, C. B.; Terris, B. D. (2002) J. Am. Chem. Soc. 124, 2884.
156. Jeon, Y. T.; Moon, J. Y.; Lee, G. H. (2006) J. Phys. Chem. B 110, 1187.
157. Zhang, H. T.; Wu, G.; Chen, X. H.; Qiu, X. G. (2006) Mater. Res. Bull. 41 495.
158. Bao, Y.; Beerman, M.; Pakhomov, A. B.; Krishnan, K. M. (2005) J. Phys. Chem. B 109, 7220.
159. Samia, A. C. S.; Hyzer, K.; Schlueter, J. A.; Qin, C. J.; Jiang, J. S.; Bader, S. D.; Lin, X. M. (2005) J. Am. Chem. Soc. 127, 4126.
160. Peng, S.; Wang, C.; Xie, J.; Sun, S. (2006) J. Am. Chem. Soc. 128, 10676.
161. Kim, S. W.; Park, J.; Jang, Y.; Chung, Y.; Hwang, S.; Hyeon, T. (2003) Nano Lett. 3, 1289.
162. Wang, C.; Daimon, H.; Lee, Y.; Kim, J.; Sun, S. (2007) J. Am. Chem. Soc. 129, 6974.
163. Woo, K.; Hong, J.; Choi, S.; Lee, H. W.; Ahn, J. P.; Kim, C. S.; Lee, S. W. (2004) Chem. Mater. 16, 2814.
164. Sun, S.; Zeng, H.; D.; Robinson, B.; Raoux, S.; Rice, P. M.; Wang, S. X.; Li, G. (2004) J. Am. Chem. Soc. 126, 273.
165. Sun, S.; Zeng, H. (2002) J. Am. Chem. Soc. 124, 8204.
166. Cheon, J.; Kang, N. J.; Lee, S. M.; Lee, J. H.; Yoon, J. H.; Oh, S. J. (2004) J. Am. Chem. Soc. 126, 1950.
167. Hyeon, T.; Lee, S. S.; Park, J.; Chung, Y.; Na, H. B. (2001) J. Am. Chem. Soc. 123, 12798.
168. Abes, J. I.; Cohen, R. E.; Ross, C. A. (2003) Mat. Sci. Eng. C 23, 641.
169. Vazquez, M.; Luna, C.; Morales, M. P.; Sanz, R.; Serna, C. J.; Mijangos, C. (2004) Physica B 354, 71.
170. Ahrenstorf, K.; Albrecht, O.; Heller, H.; Kornowski, A.; Gcrlitz, D.; Weller, H. (2007) Small 3, 271.
171. Hou, Y.; Kondoh, H.; Kogure, T.; Ohta, T. (2004) Chem. Mater. 16, 5149.
172. Son, S. U.; Jang, Y.; Park, J.; Na, H. B.; Park, H. M.; Yun, H. J.; Lee, J.; Hyeon, T. (2004) J. Am. Chem. Soc. 126, 5026.
173. Hyeon, T.; Chung, Y.; Park, J.; Lee, S. S.; Kim, Y. W.; Park, B. H. (2002) J. Phys. Chem. B 106, 6831.
174. Li, Y.; Liu, J. (2001) Chem. Mater. 13, 1008.
175. Tzitzios, V.; Niarchos, D.; Margariti, G.; Fidler, J.; Petridis, D. (2005) Nanotechnology 16, 287.
176. Mizuno, M.; Sasaki, Y.; Inoue, M. (2005) J. Appl. Phys. 97, 10J301.
177. Park, J.; Kim, M. G.; Jun, Y. W.; Lee, J. S.; Lee, W. R.; Cheon, J. (2004) J. Am. Chem. Soc. 126, 9072.
178. Lee, W.; Kim, M. G.; Choi, J.; Park, J.; Ko, S. J.; Oh, S. J.; Cheon, J. (2005) J. Am. Chem. Soc. 127, 16090.
179. Jun, C. H.; Park, Y. J.; Yeon, Y. R.; Choi, J.; Lee, W.; Ko, S.; Cheon, J. (2006) Chem. Commun. 1619.
180. Teng, X.; Yang, H. (2005) Nanotechnology 16, S554.
181. Teng, X.; Yang, H. (2003) J. Am. Chem. Soc. 125, 14559..
182. Zeng, H.; Li, J.; Wang, Z. L.; Liu, J. P.; Sun, S. (2004) Nano Lett. 4, 187.
183. Sobal, N. S.; Ebels, U.; Mohwald, H.; Giersig, M. (2003) J. Phys. Chem. B 107, 7351.
184. Cho, S. J.; Idrobo, J. C.; Olamit, J.; Liu, K.; Browning, N. D.; Kauzlarich, S. M. (2005) Chem. Mater. 17, 3181.
185. Cho, S. J.; Jarrett, B. R.; Louie, A. Y.; Kauzlarich, S. M. (2006) Nanotechnology 17, 640.
186. Cushing, B. L.; Golub, V. O.; Henry, M.; Oliva, B. L.; Cook, E.; Holmes, C. W.; O’Connor, C. J. (2005) Nanotechnology 16, 1701.
187. Zhou, W. L.; Carpenter, E. E.; Lin, J.; Kumbhar, A.; Sims, J.; O’Connor, C. J. (2001) Eur. Phys. J. D 16, 289.
188. Zhang, J.; Post, M.; Veres, T.; Jakubek, Z. J.; Guan, J.; Wang, D.; Normandin, F.; Deslandes, Y.; Simard, B. (2006) J. Phys. Chem. B 110, 7122.
189. 龔吉合 (1998) 材料科學導論,臺中:滄海。
190. Kodama, R. H. (1999) J. Magn. Magn. Mater. 200, 359.
191. Billas, I. M. L.; Châtelain, A.; de Heer, W. A. (1994) Science 265, 1682.
192. Billas, I. M. L.; Châtelain, A.; de Heer, W. A. (1997) J. Magn. Magn. Mater. 168, 64.
193. Freeman, A. J.; Fu, C. L.; Ohnishi, S.; Weinert, M. (1985) in: R. Feder (ed.), Polarized Electrons in Surface Physics, World Scientific, Singapore, pp. 3-66
194. 張正武 (2004) FePt及FePtB奈米晶薄帶磁性、相變化與交換藕合效應之研究,國立中正大學物理研究所碩士論文。
195. Sorensen, C. M. (2001) Magnetism. In: Klabunde, K. J., ed. Nanoscale Materials in Chemistry. New York: Wiley Interscience, pp.169-222.
196. 陳文照,曾春風,游信和 譯 (2002) 材料科學與工程導論,臺北:高立。
197. Wyatt, O. H.; Dew-Hughes, D. (1974) Metals, ceramics and polymers, Cambridge University press.
198. Cullity, B. D. (1972) Introduction to magnetic materials. California:Addison-Wesley
199. 張煦,李學養 譯 (1982) 磁性物理學,臺北:聯經。
200. J. Frenkel and J. Dorfman, (1930) Nature, London 126, 274.
201. Louis, N. (1949) Compt. Rend. 228, 664.
202. 何建新 (2004) FePt奈米微粒之製備與自組裝特性研究,國立清華大學材料科學工程研究所碩士論文。
203. 陳毓宏 (2003) 新穎的奈米粒子合成方法與在生醫上的應用:金銀,金鈀,金,國立成功大學化學研究所博士論文。
204. Weaver, J. C.; Chizmadzhev, Y. A. (1996) Bioelectrochemistry and Bioenergetics 41, 135.
205. Mie, G. (1908) Ann. Phys. 25, 377.
206. Kreibig, U.; Fragstein, C. V. Z. (1969) Phys. 224, 307.
207. Selby, K.; Vollmer, M.; Masui, J.; Kersin, V.; de Heer, W. A.; Knight, W. D. (1989) Phys. Rev. B 40, 5417.
208. Mulvaney, P. (1996) Langmuir 12, 788.
209. Hyeon, T. (2003) Chem.Commun. 927.
210. Chen, M.; Pica, T.; Jiang, Y. B.; Li, P.; Yano, K.; Liu, J. P.; Datye, A. K.; Fan, H. (2007) J. Am. Chem. Soc. 129, 6348.
211. Chen, M.; Kim, J.; Liu, J. P.; Fan, H.; Sun, S. (2006) J. Am. Chem. Soc. 128, 7132.
212. Farrell, D.; Majetich, S. A.; Wilcoxon, J. P. (2003) J. Phys. Chem. B 107, 11022.
213. Heath, J. R.; Knobler, C. M.; Leff, D. V. (1997) J. Phys. Chem. B 101, 189.
214. Korgel, B. A.; Fitzmauice, D. (1998) Phys. Rev. Lett. 80, 3531.
215. Gelbart, W.; Sear, R. P.; Heath, J. R.; Chaney, S. (1999) Faraday Discussions 112, 299.
216. Hoover, W. G.; Ree, F. H. (1968) J. Chem. Phys. 49, 3609.
217. Pusey, P. N.; van Megen, W. (1986) Nature 320, 340.
218. Vincent, B.; Edwards, J.; Emmett, S. (1986) Colloids Surfaces 18, 261.
219. Puntes,V. F.; Bastús, N. G.; Pagonabarraga, I.; Iglesias, O.; Labarta, A. Batlle, X. (2005) Int. J. Nanotechnology 2, 62.
220. Rabani, E.; Reichman, D. R.; Geissler, P. L.; Brus, L. E. (2003) Nature, London 426, 271.
221. 田光泰 (2007) 超晶格薄膜LED理論模型與發光效率之研究,國立成功大學機械工程研究所碩士論文。
222. Murray, C. B.; Kagan, C. R.; Bawendi, M. G. (2000) Annual Review of Materials Science 30, 545.
223. Redl, F. X.; Cho, K. S.; Murray, C. B.; O’Brien, S. (2003) Nature, London 423, 968.
224. Puntes, V. F.; Krishnan, K. M.; Alivisatos, A. P. (2001) Science 291, 2115.
225. Maillard, M.; Motte, L.; Ngo, A. T.; Pileni, M. P. (2000) J. Phys. Chem. B 104, 11871.
226. Kiely, C. J.; Fink, J.; Brust, M.; Bethell, D.; Schiffrin, D. J. (1998) Nature, London 396, 444.
227. Redl, F. X.; Cho, K. S.; Murray, C. B.; O’Brien, S. (2003) Nature, London 423, 968.
228. Sra, A. K.; Ewers, T. D.; Xu, Q.; Zandbergenb, H.; Schaak, R. E. (2006) Chem. Commun. 750.
229. Rahman, A. (1964) Phys. Rev. 136, A405.
230. Sawada, Y.; Kageyama, Y.; Iwata, M.; Tasaki, A. (1992) Jpn. J. Appl. Phys. 31, 3858.
231. Beingessner, C. J.; Winegard, W. C. (1967) Transactions of the Metallurgical Society of AIME 239, 924.
232. Wu, M. L.; Chen, D. H.; Huang, T. C. (2001) Chem. Mater. 13, 599.
233. Wu, M. L.; Chen, D. H.; Huang, T. C. (2001) Langmuir 17, 3877.
234. Daniel, M. C.; Astruc, D. (2004) Chem. Rev. 104, 293.
235. Yu, H.; Chen, M.; Rice, P. M.; Wang, S. X.; White, R. L.; Sun, S. (2005) Nano. Lett. 5, 379.
236. Greaves, C. (1983) J. Solid State Chem. 49, 325.
237. Hyeon, T.; Lee, S. S.; Park, J.; Chung, Y.; Na, H. B. (2001) J. Am. Chem. Soc. 123, 12798.
238. Peng, S.; Wang, C.; Xie, J.; Sun, S. (2006) J. Am. Chem. Soc. 128, 10676.
239. Yu, S.; Chow, G. M. (2006) J. Nanosci. Nanotechnol. 6, 2135.
240. Guo, Z.; Henry, L. L.; Palshin, V.; Podlaha, E. J. (2006) J. Mater. Chem. 16, 1772.
241. Ravel, B.; Carpenter, E. E.; Harris, V. G. (2002) J. Appl. Phys. 91, 8195.
242. Brion, D. (1980) Appl. Surf. Sci. 5, 133.
243. Wanger, C. D.; Moulder, J. F.; Davis, L. E.; Riggs, W. M. (1995) Handbook of X-ray photoelectron spectroscopy, Perking-Elmer Corporation
244. Bandyopadhyay, J.; Gupta, K. P. (1977) Cryogenics, London 17 345.
245. Ellner, M.; Kolatschek, K.; Predel, B. (1991) J. Less-common Metals 170, 171.
246. Tsaur, B. Y.; Maenpaa, M. (1981) J. Appl. Phys. 52, 728.
247. Jeon, Y. T.; Moon, J. Y.; Lee, G. H. (2006) J. Phys. Chem. B 110, 11871.
248. Parada, C.; Mora´n, E. (2006) Chem. Mater. 18, 2719.
249. Wu, S. H.; Chen, D. H. (2000) Chem. Mater. 12, 1354.
250. Wu, S. H.; Chen, D. H. (2003) J. Colloid Interface Sci. 259, 282.
251. Wu, S. H.; Chen, D. H. (2004) Chem. Lett. 33, 406.