| 研究生: |
游雅晴 You, Ya-Cing |
|---|---|
| 論文名稱: |
浮動式光達平台穩定度實驗及生物附著對繫纜張力之影響 Stability Test of Floating LiDar Platform and Effect of Marine Growth on Mooring Line Tension |
| 指導教授: |
陳佳琳
Chen, Jia-Lin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 56 |
| 中文關鍵詞: | 離岸風能 、浮動式平台 、光達 、生物附著 、平台穩定度 |
| 外文關鍵詞: | Offshore wind energy, floating platform, LiDar, marine growth, stability of platform |
| 相關次數: | 點閱:133 下載:15 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,為降低因火力發電產生的二氧化碳及減少核能產生的核廢料,對於綠色能源的需求日漸增加,除了太陽能之外,亦致力於風力發電,從陸上發展至離岸,目前於淺水處採用固定式基座,未來往深水處發展,於深水採用固定式基座的話,水下結構增加成本相對提高,且未來風機巨大化的趨勢,為評估深水的風能資源,使用浮動式光達為較具經濟效益的選擇。
本研究的研究重點在於浮動式平台的穩定度與繫纜系統的張力變化,藉由實驗以分析其運動變化,並以實驗之Heave及Surge位移時序列輸入至Orcaflex數值模式建立模型,分析在生物附著後張力之差異。
本文之實驗模型為DeepCwind OC4半潛式浮體平台以福祿數1:6.4之縮尺,在實驗中,分別有不規則波及規則波各四種不同波浪條件,陀螺儀收錄六軸加速度及角度,張力計收錄造波時繫纜的張力變化,為使平台穩定性增加,與金屬工業研究中心合作設計運動補償雲台,為分析雲台的效用,改變其活動度,比較補償機制開啟前後的平台穩定性。
在平台側面安裝LED燈,以攝影機錄製影像,進行影像分析,分析出的X軸(Surge)及Z軸(Heave)位移為數值的輸入檔,以規則波之數據進行比較以建立模型,進而改變繫纜的內外徑與單位長度重量,模擬生物生長時的張力變化,比較生物附著前後繫纜斷裂力的差別,探討生物附著於繫纜設計的重要性。
In order to reduce carbon dioxide that produce from the thermal power generation and nuclear waste, the requirement of green energy is increasing. Besides solar energy, offshore wind energy development is rapidly growing in Taiwan.. As onshore wind energy technology advances, we will begin to exploit the offshore wind farm. At present, the developers usually used the fixed foundation at nearshore site. To exploit the deeper water and cooperate the large-scale of wind turbine has become the future trend. If we also use the piling to construct the met mast, the cost will be increased. In order to evaluate the wind resource at deep water, using floating LiDar is a more economic choice. This research focuses on the stability of floating platform and the effect of marine growth on mooring line tension. Experimental tests in a large water flume were conducted at National Cheng Kung University, Tainan Hydraulics Laboratory (THL). The model applies the Froude Number to a 1:6.4 scaled semi-submersible platform. There are four different wave conditions, including regular wave and the irregular waves. We use the gyroscope and tension sensor to record data. Then, we design the motion compensation device, cooperate with Metal Industries Research and Development Center(MIRDC), to increase stability of platform. The LED was set on the side of platform and camera was used to record the video. The recorded images were analyzed by Matlab to obtain the displacement of platform, which is the input data for numerical model. We also explore the mooring line geometry by changing the diameter and weight of mooring line. The results are used to compare the tension after marine growth on the mooring line.
1.(API), A. P. I. (2015). "Design and Analysis of Stationkeeping Systems for Floating Structures."
2.Cool, G. (2016). "Floating LiDAR Technology: Oceanographic parameters influencing accuracy of wind vector reconstruction."
3.DNV, G. (2014). "DNV-RP-C205: Environmental conditions and environmental loads." DNV GL, Oslo, Norway.
4.Du, Y., et al. (2015). "A novel underwater measurement method for mooring system using self-contained technique." Advances in Mechanical Engineering 7(5): 1687814015585973.
5.Gottschall, J., et al. (2017). "Floating lidar as an advanced offshore wind speed measurement technique: Current technology status and gap analysis in regard to full maturity." Wiley Interdisciplinary Reviews: Energy and Environment 6(5): e250.
6.Gottschall, J., et al. (2017). "Floating lidar as an advanced offshore wind speed measurement technique: current technology status and gap analysis in regard to full maturity." Wiley Interdisciplinary Reviews: Energy and Environment 6(5).
7.Manual, O. (2012). "Online at http://www. orcina. com/SoftwareProducts/OrcaFlex/Documentation." OrcaFlex. pdf.
8.Moncus, J. D. and J. H. Miller Jr (2005). Motion compensation system and method, Google Patents.
9.NORSOK (2007). "N-003 Actions and action effects 2nd Edition."
10.Pedersen, T. F., et al. (2006). "ACCUWIND-Classification of five cup anemometers according to IEC 61400-12-1."
11.RP2A-WSD, A. (2000). Recommended practice for planning, designing and constructing fixed offshore platforms–working stress design–. Twenty-.
12.Spraul, C., et al. (2017). Effect of marine growth on floating wind turbines mooring lines responses. Congrès français de mécanique, AFM, Association Française de Mécanique.
13.trust, C. (2013). Carbon Trust Offshore Wind Accelerator roadmap for the commercial acceptance of floating LIDAR technology.
14.Wolken-Möhlmann, G., et al. (2011). "Simulation of motion induced measurement errors for wind measurements using LIDAR on floating platforms." Fraunhofer IWES, Am Seedeich 45(27): 572.
15.工研院 (2017). "浮體式離岸風電技術發展現況與未來展望."
16.唐宏結, et al. (2018). Hywind和DeepCwind兩種浮動式風機基座及其錨碇系統動力特性比較. 海洋工程研討會. 國立高雄海洋科技大學.
17.張上君, et al. (2014). 離岸風場海氣象觀測塔之規劃與設計技術, 台灣世曦工程顧問股份有限公司.