簡易檢索 / 詳目顯示

研究生: 陳信良
Chen, Shin-Liang
論文名稱: 量子操縱性:與設備無關之量化以及時間量子關聯性
Quantum steering: device-independent quantification and temporal quantum correlations
指導教授: 陳岳男
Chen, Yueh-Nan
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 74
中文關鍵詞: 量子操縱性量子糾纏量子非局域性時間量子關聯性開放性量子系統
外文關鍵詞: quantum steering, quantum entanglement, quantum nonlocality, temporal quantum correlations, open quantum systems
相關次數: 點閱:205下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 「貝爾(Bell)非局域性」是量子力學最重要的性質之一,利用這個性質,其中一個在近幾年來吸引著許多人注意的重要應用為「與設備無關的量子資訊過程」。背後的一個主要因素是,在進行實驗時的測量設備可以被視為黑箱,意即我們不需要對這些設備做太多物理上的假設,這樣的工具可以使得實驗學家在利用不可能百分之百完美的測量設備時,仍然可以相信最後的實驗結果。

    量子力學有個另外的重要現象-「量子操縱性」。簡單來說,量子操縱性讓我們僅經由量測自己的系統,可以為遙遠的另一端準備不同基底的量子態,而這個「如鬼魅般的超距作用」的現象在古典力學是不可能發生的。

    已經有研究指出,所有具有非局域性的量子態,必定也有操縱性,即:量子操縱性為系統之間擁有量子關聯性的必要條件。本論文的工作之一即是量化此性質,意即在觀測到某個程度的非局域性量子態的情況之下,需要多少程度的操縱性在系統之間。

    上述的量子關聯性是發生在兩個或以上的系統之間的量子現象。然而,如果我們考慮在不同時間點的同一個系統,也可以擁有區別於古典的時間量子關聯性。其中一個重要的時間量子關聯性的概念是由萊格特(A. J. Leggett)和加爾格(A. Garg)提出的,這種關聯性時常又被稱做為「時間上的貝爾非局域性」。受到這個工作的啟發,本論文的另一個工作是探索量子操縱性是否也存在著時間上的版本-「時間量子操縱性」,並且研究其相對應的物理意涵以及應用。

    Bell nonlocality is one of the most intriguing phenomena in quantum mechanics. An important application by using nonlocality of quantum states as a resource is device-independent (DI) quantum information processing, which has attracted a lot of attentions recently. A main reason is that one can treat the devices as black boxes, and few assumptions on the operations of the devices are made. Such a black-box scheme makes an experiment feasible even when the devices are imperfect.

    Quantum steering is a phenomenon in quantum theory that allows one party to instantaneously and remotely prepare the set of quantum states for the other spatially separated party, merely by the former party’s choice of measurement settings. This can not happen in a locally hidden state model, from which the measurement outcomes of one party and the quantum states of the other party are predetermined by some hidden variables. The resource of such “spooky action at a distance” provides inspirations and many applications in the foundation of quantum mechanics and in quantum information sciences.

    Indeed, there exists relations between steering and nonlocality. More precisely, all nonlocal quantum states are also steerable, but not vice versa. One of the main works of this thesis is to quantify such a property, i.e., obtaining a lower bound of steerability when given a nonlocal correlations.

    Quantum phenomena can also occur in a single system at different moments of time. A famous example is the existence of dynamics which does not fulfill the joint assumption of non-invasive measurability and macroscopic realism. This can be witnessed by the violation of a Leggett-Garg inequality, which is also treated as a temporal analogue of a Bell inequality. Motivated by this, we would like to develop a temporal analogue of quantum steering and refer to this new concept as temporal steering, which is the other main work of this thesis, and several applications are also given.

    1 Introduction p.1 1.1 Quantum steering p.1 1.2 Bell's theorem and device-independent quantum information processing p.2 1.3 Temporal quantum correlations p.2 1.4 Thesis overview p.4 2 Quantum Steering p.7 2.1 The Einstein-Podolsky-Rosen paradox p.7 2.2 A locally hidden state model and quantum steering p.8 2.2.1 Bell local causality in a locally hidden state model p.8 2.2.2 Revisiting quantum steering: Wiseman, Jones, and Doherty p.12 2.2.3 Steerability witness p.15 2.2.4 Quantum violation p.16 2.3 Quanti cation of quantum steerability p.18 2.3.1 Steerable weight p.19 2.3.2 Steering robustness p.19 2.3.3 Other quanti ers p.21 2.4 Relation to entanglement and nonlocality p.21 3 Device-independent quanti cation of quantum steerability p.25 3.1 Navascues-Pironio-Acn (NPA) hierarchy p.25 3.1.1 No-signalling correlations, local correlations and quantum correlations p.25 3.1.2 The NPA hierarchy p.28 3.2 Assemblage moment matrices and device-independent quanti cation of steerability p.33 3.2.1 Assemblage moment matrices p.33 3.2.2 Device-independent quanti cation of steerability p.38 4 Temporal steering p.41 4.1 A temporal hidden state model p.41 4.1.1 A temporal hidden state model as a mixture of a temporal hidden variable model and local quantum mechanics p.41 4.1.2 Temporal steering inequalities p.43 4.1.3 Quantum violations p.44 4.2 Quantifying temporal steerability p.45 4.2.1 Temporal steerable weight p.45 4.3 Quantifying non-Markovianity with temporal steerability p.48 4.3.1 Example 1: Coherent Rabi oscillations of a Markovian system p.50 4.3.2 Example 2: A simple non-Markovian model: A qubit coherently coupled to another qubit p.52 4.3.3 Example 3: A qubit coupled to a non-Markovian multimode reservoir p.52 4.3.4 Example 4: non-Markovianity of a spin-boson problem p.53 4.4 Relations to quantum key distribution p.56 5 Conclusions 59

    [1] Schrodinger, E. Discussion of probability relations between separated systems.
    Mathematical Proceedings of the Cambridge Philosophical Society 31, 555{563
    (2008). URL http://dx.doi.org/10.1017/S0305004100013554.
    [2] Einstein, A., Podolsky, B. & Rosen, N. Can quantum-mechanical description
    of physical reality be considered complete? Phys. Rev. 47, 777{780 (1935).
    URL http://link.aps.org/doi/10.1103/PhysRev.47.777.
    [3] Reid, M. D. Demonstration of the Einstein-Podolsky-Rosen paradox using
    nondegenerate parametric ampli cation. Phys. Rev. A 40, 913{923 (1989).
    URL http://link.aps.org/doi/10.1103/PhysRevA.40.913.
    [4] Wiseman, H. M., Jones, S. J. & Doherty, A. C. Steering, entanglement,
    nonlocality, and the Einstein-Podolsky-Rosen paradox. Phys. Rev. Lett. 98,
    140402 (2007). URL http://link.aps.org/doi/10.1103/PhysRevLett.98.
    140402.
    [5] Cavalcanti, E. G., Jones, S. J., Wiseman, H. M. & Reid, M. D. Experimental
    criteria for steering and the Einstein-Podolsky-Rosen paradox. Phys. Rev. A
    80, 032112 (2009). URL http://link.aps.org/doi/10.1103/PhysRevA.80.
    032112.
    [6] Saunders, D. J., Jones, S. J., Wiseman, H. M. & Pryde, G. J. Experimental
    EPR-steering using Bell-local states. Nat. Phys. 6, 845{849 (2010). URL
    http://dx.doi.org/10.1038/nphys1766.
    [7] Walborn, S. P., Salles, A., Gomes, R. M., Toscano, F. & Souto Ribeiro, P. H.
    Revealing hidden Einstein-Podolsky-Rosen nonlocality. Phys. Rev. Lett. 106,
    130402 (2011).
    [8] Wittmann, B. et al. Loophole-free Einstein-Podolsky-Rosen experiment via
    quantum steering. New J. Phys. 14, 053030 (2012). URL http://stacks.
    iop.org/1367-2630/14/i=5/a=053030.
    [9] Smith, D. H. et al. Conclusive quantum steering with superconducting
    transition-edge sensors. Nat. Commun. 3, 625 (2012).
    [10] Bennet, A. J. et al. Arbitrarily loss-tolerant Einstein-Podolsky-Rosen steering
    allowing a demonstration over 1 km of optical ber with no detection loophole.
    Phys. Rev. X 2, 031003 (2012).
    [11] Handchen, V. et al. Observation of one-way Einstein-Podolsky-Rosen steering.
    Nat. Photon. 6, 596{599 (2012).
    [12] Steinlechner, S., Bauchrowitz, J., Eberle, T. & Schnabel, R. Strong Einstein-
    Podolsky-Rosen steering with unconditional entangled states. Phys. Rev. A
    87, 022104 (2013).
    [13] Su, H. Y., Chen, J. L., Wu, C., Deng, D. L. & Oh, C. H. Detecting Einstein-
    Podolsky-Rosen steering for continuous variable wavefunctions. I. J. Quant.
    Infor. 11, 1350019 (2013).
    [14] Schneeloch, J., Dixon, P. B., Howland, G. A., Broadbent, C. J. & Howell,
    J. C. Violation of continuous-variable Einstein-Podolsky-Rosen steering with
    discrete measurements. Phys. Rev. Lett. 110, 130407 (2013).
    [15] Skrzypczyk, P., Navascu es, M. & Cavalcanti, D. Quantifying Einstein-
    Podolsky-Rosen steering. Phys. Rev. Lett. 112, 180404 (2014). URL http:
    //link.aps.org/doi/10.1103/PhysRevLett.112.180404.
    [16] Piani, M. & Watrous, J. Necessary and su cient quantum information
    characterization of Einstein-Podolsky-Rosen steering. Phys. Rev. Lett. 114,
    060404 (2015). URL http://link.aps.org/doi/10.1103/PhysRevLett.
    114.060404.
    [17] Gallego, R. & Aolita, L. Resource theory of steering. Phys. Rev. X 5, 041008
    (2015). URL http://link.aps.org/doi/10.1103/PhysRevX.5.041008.
    [18] Kogias, I., Lee, A. R., Ragy, S. & Adesso, G. Quanti cation of gaussian
    quantum steering. Phys. Rev. Lett. 114, 060403 (2015). URL http://link.
    aps.org/doi/10.1103/PhysRevLett.114.060403.
    [19] Costa, A. C. S. & Angelo, R. M. Quanti cation of Einstein-Podolsky-Rosen
    steering for two-qubit states. Phys. Rev. A 93, 020103 (2016). URL http:
    //link.aps.org/doi/10.1103/PhysRevA.93.020103.
    [20] Uola, R., Moroder, T. & Guhne, O. Joint measurability of generalized measurements
    implies classicality. Phys. Rev. Lett. 113, 160403 (2014). URL
    http://link.aps.org/doi/10.1103/PhysRevLett.113.160403.
    [21] Quintino, M. T., V ertesi, T. & Brunner, N. Joint measurability, Einstein-
    Podolsky-Rosen steering, and Bell nonlocality. Phys. Rev. Lett. 113,
    160402 (2014). URL http://link.aps.org/doi/10.1103/PhysRevLett.
    113.160402.
    [22] Uola, R., Budroni, C., Guhne, O. & Pellonpaa, J.-P. One-to-one mapping
    between steering and joint measurability problems. Phys. Rev. Lett. 115,
    230402 (2015). URL http://link.aps.org/doi/10.1103/PhysRevLett.
    115.230402.
    [23] Cavalcanti, D. & Skrzypczyk, P. Quantitative relations between measurement
    incompatibility, quantum steering, and nonlocality. Phys. Rev. A 93, 052112
    (2016). URL http://link.aps.org/doi/10.1103/PhysRevA.93.052112.
    [24] Chen, S.-L., Budroni, C., Liang, Y.-C. & Chen, Y.-N. Natural framework
    for device-independent quanti cation of quantum steerability, measurement
    incompatibility, and self-testing. Phys. Rev. Lett. 116, 240401 (2016). URL
    http://link.aps.org/doi/10.1103/PhysRevLett.116.240401.
    [25] He, Q. & Reid, M. D. Genuine multipartite Einstein-Podolsky-Rosen steering.
    Phys. Rev. Lett. 111, 250403 (2013). URL http://link.aps.org/doi/10.
    1103/PhysRevLett.111.250403.
    [26] Cavalcanti, D. et al. Detection of entanglement in asymmetric quantum networks
    and multipartite quantum steering. Nat. Commun. 6, 7941 (2015).
    [27] Armstrong, S. et al. Multipartite Einstein-Podolsky-Rosen steering and genuine
    tripartite entanglement with optical networks. Nat. Phys. 11, 167{172
    (2015). URL http://dx.doi.org/10.1038/nphys3202.
    [28] Li, C.-M. et al. Genuine high-order Einstein-Podolsky-Rosen steering. Phys.
    Rev. Lett. 115, 010402 (2015). URL http://link.aps.org/doi/10.1103/
    PhysRevLett.115.010402.
    [29] Xiang, Y., Kogias, I., Adesso, G. & He, Q. Multipartite Gaussian steering:
    monogamy constraints and cryptographical applications. arXiv:1603.08173
    (2016). URL http://arxiv.org/abs/1603.08173.
    [30] The special issue of J. Opt. Soc. B on 80 years of steering and the Einstein{
    Podolsky{Rosen paradox. J. Opt. Soc. B 32, A1{A91 (2015). URL https:
    //doi.org/10.1364/JOSAB.32.00EPR1.
    [31] Bell, J. S. On the Einstein-Podolsky-Rosen paradox. Physics 1, 195{200
    (1964). URL http://www.drchinese.com/David/{B}ell_Compact.pdf.
    [32] Brunner, N., Cavalcanti, D., Pironio, S., Scarani, V. & Wehner, S. Bell nonlocality.
    Rev. Mod. Phys. 86, 419{478 (2014). URL http://link.aps.org/
    doi/10.1103/RevModPhys.86.419.
    [33] Freedman, S. J. & Clauser, J. F. Experimental test of local hidden-variable
    theories. Phys. Rev. Lett. 28, 938{941 (1972). URL http://link.aps.org/
    doi/10.1103/PhysRevLett.28.938.
    [34] Aspect, A., Dalibard, J. & Roger, G. Experimental test of Bell's inequalities
    using time- varying analyzers. Phys. Rev. Lett. 49, 1804{1807 (1982). URL
    http://link.aps.org/doi/10.1103/PhysRevLett.49.1804.
    [35] Weihs, G., Jennewein, T., Simon, C., Weinfurter, H. & Zeilinger, A. Violation
    of Bell's inequality under strict einstein locality conditions. Phys.
    Rev. Lett. 81, 5039{5043 (1998). URL http://link.aps.org/doi/10.1103/
    PhysRevLett.81.5039.
    [36] Rowe, M. A. et al. Experimental violation of a Bell's inequality with e cient
    detection. Nature 409, 791{794 (2001). URL http://dx.doi.org/10.1038/
    35057215.
    [37] Matsukevich, D. N., Maunz, P., Moehring, D. L., Olmschenk, S. & Monroe,
    C. Bell inequality violation with two remote atomic qubits. Phys.
    Rev. Lett. 100, 150404 (2008). URL http://link.aps.org/doi/10.1103/
    PhysRevLett.100.150404.
    [38] Ansmann, M. et al. Violation of Bell's inequality in josephson phase
    qubits. Nature 461, 504{506 (2009). URL http://dx.doi.org/10.1038/
    nature08363.
    [39] Scheidl, T. et al. Violation of local realism with freedom of choice. Proceedings
    of the National Academy of Sciences 107, 19708{19713 (2010). URL http://
    www.pnas.org/content/107/46/19708.abstract. http://www.pnas.org/
    content/107/46/19708.full.pdf.
    [40] Hofmann, J. et al. Heralded entanglement between widely separated
    atoms. Science 337, 72{75 (2012). URL http://science.sciencemag.org/
    content/337/6090/72. http://science.sciencemag.org/content/337/
    6090/72.full.pdf.
    [41] Giustina, M. et al. Bell violation using entangled photons without the fairsampling
    assumption. Nature 497, 227{230 (2013). URL http://dx.doi.
    org/10.1038/nature12012.
    [42] Hensen, B. et al. Loophole-free Bell inequality violation using electron spins
    separated by 1.3 kilometres. Nature 526, 682{686 (2015). URL http://dx.
    doi.org/10.1038/nature15759.
    [43] Christensen, B. G., Liang, Y.-C., Brunner, N., Gisin, N. & Kwiat, P. G. Exploring
    the limits of quantum nonlocality with entangled photons. Phys. Rev.
    X 5, 041052 (2015). URL http://link.aps.org/doi/10.1103/PhysRevX.
    5.041052.
    [44] Cleve, R. & Buhrman, H. Substituting quantum entanglement for communication.
    Phys. Rev. A 56, 1201{1204 (1997). URL http://link.aps.org/
    doi/10.1103/PhysRevA.56.1201.
    [45] Cubitt, T. S., Leung, D., Matthews, W. & Winter, A. Zero-error channel
    capacity and simulation assisted by non-local correlations. IEEE Transactions
    on Information Theory 57, 5509{5523 (2011). URL http://dx.doi.org/10.
    1109/TIT.2011.2159047.
    [46] Ekert, A. K. Quantum cryptography based on Bell's theorem. Phys.
    Rev. Lett. 67, 661{663 (1991). URL http://link.aps.org/doi/10.1103/
    PhysRevLett.67.661.
    [47] Acn, A., Massar, S. & Pironio, S. E cient quantum key distribution secure
    against no-signalling eavesdroppers. New Journal of Physics 8, 126 (2006).
    URL http://stacks.iop.org/1367-2630/8/i=8/a=126.
    [48] Ac n, A. et al. Device-independent security of quantum cryptography against
    collective attacks. Phys. Rev. Lett. 98, 230501 (2007). URL http://link.
    aps.org/doi/10.1103/PhysRevLett.98.230501.
    [49] Brunner, N. et al. Testing the dimension of hilbert spaces. Phys.
    Rev. Lett. 100, 210503 (2008). URL http://link.aps.org/doi/10.1103/
    PhysRevLett.100.210503.
    [50] V ertesi, T. & P al, K. F. Generalized clauser-horne-shimony-holt inequalities
    maximally violated by higher-dimensional systems. Phys. Rev. A 77, 042106
    (2008). URL http://link.aps.org/doi/10.1103/PhysRevA.77.042106.
    [51] Pironio, S. et al. Random numbers certi ed by Bell's theorem. Nature 464,
    1021{1024 (2010). URL http://dx.doi.org/10.1038/nature09008.
    [52] Chaves, R., Brask, J. B. & Brunner, N. Device-independent tests of entropy.
    Phys. Rev. Lett. 115, 110501 (2015). URL http://link.aps.org/doi/10.
    1103/PhysRevLett.115.110501.
    [53] Kochen, S. & Specker, E. P. The problem of hidden variables in quantum
    mechanics. J. Math. Mech. 17, 59{87 (1967).
    [54] Leggett, A. J. & Garg, A. Quantum mechanics versus macroscopic realism:
    Is the
    ux there when nobody looks? Phys. Rev. Lett. 54, 857 (1985). URL
    http://link.aps.org/doi/10.1103/PhysRevLett.54.857.
    [55] Palacios-Laloy, A. et al. Experimental violation of a Bell/'s inequality in
    time with weak measurement. Nat. Phys. 6, 442{447 (2010). URL http:
    //dx.doi.org/10.1038/nphys1641.
    [56] Goggin, M. E. et al. Violation of the leggettgarg inequality with weak measurements
    of photons. Proceedings of the National Academy of Sciences 108, 1256{
    1261 (2011). URL http://www.pnas.org/content/108/4/1256.abstract.
    http://www.pnas.org/content/108/4/1256.full.pdf.
    [57] Dressel, J., Broadbent, C. J., Howell, J. C. & Jordan, A. N. Experimental
    violation of two-party leggett-garg inequalities with semiweak measurements.
    Phys. Rev. Lett. 106, 040402 (2011). URL http://link.aps.org/doi/10.
    1103/PhysRevLett.106.040402.
    [58] Xu, J.-S., Li, C.-F., & Guo, G.-C. Experimental violation of the leggettgarg
    inequality under decoherence. Scienti c Reports 1, 101 (2011). URL
    http://dx.doi.org/10.1038/srep00101.
    [59] Fedrizzi, A., Almeida, M. P., Broome, M. A., White, A. G. & Barbieri, M.
    Hardy's paradox and violation of a state-independent Bell inequality in time.
    Phys. Rev. Lett. 106, 200402 (2011). URL http://link.aps.org/doi/10.
    1103/PhysRevLett.106.200402.
    [60] Waldherr, G., Neumann, P., Huelga, S. F., Jelezko, F. & Wrachtrup, J. Violation
    of a temporal Bell inequality for single spins in a diamond defect center.
    Phys. Rev. Lett. 107, 090401 (2011). URL http://link.aps.org/doi/10.
    1103/PhysRevLett.107.090401.
    [61] Athalye, V., Roy, S. S. & Mahesh, T. S. Investigation of the leggett-garg
    inequality for precessing nuclear spins. Phys. Rev. Lett. 107, 130402 (2011).
    URL http://link.aps.org/doi/10.1103/PhysRevLett.107.130402.
    [62] Souza, A. M., Oliveira, I. S. & Sarthour, R. S. A scattering quantum circuit for
    measuring Bell's time inequality: a nuclear magnetic resonance demonstration
    using maximally mixed states. New Journal of Physics 13, 053023 (2011).
    URL http://stacks.iop.org/1367-2630/13/i=5/a=053023.
    [63] Knee, G. C. et al. Violation of a leggettgarg inequality with ideal non-invasive
    measurements. Nat. Comm. 3, 606 (2012). URL http://dx.doi.org/10.
    1038/ncomms1614.
    [64] Suzuki, Y., Iinuma, M. & Hofmann, H. F. Violation of leggettgarg inequalities
    in quantum measurements with variable resolution and back-action. New Jour-
    nal of Physics 14, 103022 (2012). URL http://stacks.iop.org/1367-2630/
    14/i=10/a=103022.
    [65] George, R. E. et al. Opening up three quantum boxes causes classically undetectable
    wavefunction collapse. Proceedings of the National Academy of Sci-
    ences 110, 3777{3781 (2013). URL http://www.pnas.org/content/110/10/
    3777.abstract. http://www.pnas.org/content/110/10/3777.full.pdf.
    [66] Katiyar, H., Shukla, A., Rao, K. R. K. & Mahesh, T. S. Violation of entropic
    leggett-garg inequality in nuclear spins. Phys. Rev. A 87, 052102 (2013). URL
    http://link.aps.org/doi/10.1103/PhysRevA.87.052102.
    [67] Asadian, A., Brukner, C. & Rabl, P. Probing macroscopic realism via ramsey
    correlation measurements. Phys. Rev. Lett. 112, 190402 (2014). URL http:
    //link.aps.org/doi/10.1103/PhysRevLett.112.190402.
    [68] Zhou, Z.-Q., Huelga, S. F., Li, C.-F. & Guo, G.-C. Experimental detection
    of quantum coherent evolution through the violation of leggett-garg-type in-
    equalities. Phys. Rev. Lett. 115, 113002 (2015). URL http://link.aps.org/
    doi/10.1103/PhysRevLett.115.113002.
    [69] Robens, C., Alt, W., Meschede, D., Emary, C. & Alberti, A. Ideal negative
    measurements in quantum walks disprove theories based on classical trajectories.
    Phys. Rev. X 5, 011003 (2015). URL http://link.aps.org/doi/10.
    1103/PhysRevX.5.011003.
    [70] White, T. et al. Preserving entanglement during weak measurement demonstrated
    with a violation of the Bell-leggett-garg inequality. arXiv:1504.02707
    (2015). URL https://arxiv.org/abs/1504.02707.
    [71] Knee, G. C. et al. A strict experimental test of macroscopic realism in a
    superconducting
    ux qubit. Nat. Comm. 7, 13253 (2016). URL http://dx.
    doi.org/10.1038/ncomms13253.
    [72] Bennett, C. H. & G., B. Public key distribution and coin tossing. Proc. IEEE
    Int. Conf. Comp. Sys. Sig. Process. 175, 8 (1984). URL http://dx.doi.org/
    10.1137/1038003.
    [73] Bowles, J., Quintino, M. T. & Brunner, N. Certifying the dimension of classical
    and quantum systems in a prepare-and-measure scenario with independent
    devices. Phys. Rev. Lett. 112, 140407 (2014). URL http://link.aps.org/
    doi/10.1103/PhysRevLett.112.140407.
    [74] Budroni, C., Moroder, T., Kleinmann, M. & Guhne, O. Bounding temporal
    quantum correlations. Phys. Rev. Lett. 111, 020403 (2013). URL http:
    //link.aps.org/doi/10.1103/PhysRevLett.111.020403.
    [75] Clemente, L. & Ko
    er, J. No ne theorem for macrorealism: Limitations
    of the leggett-garg inequality. Phys. Rev. Lett. 116, 150401 (2016). URL
    http://link.aps.org/doi/10.1103/PhysRevLett.116.150401.
    [76] Lambert, N. et al. Quantum biology. Nat. Phys. 9, 10 (2013).
    [77] Galv~ao, E. F. Feasible quantum communication complexity protocol. Phys.
    Rev. A 65, 012318 (2001). URL http://link.aps.org/doi/10.1103/
    PhysRevA.65.012318.
    [78] Trojek, P. et al. Experimental quantum communication complexity. Phys. Rev.
    A 72, 050305 (2005). URL http://link.aps.org/doi/10.1103/PhysRevA.
    72.050305.
    [79] Tavakoli, A., Hameedi, A., Marques, B. & Bourennane, M. Quantum random
    access codes using single d-level systems. Phys. Rev. Lett. 114, 170502 (2015).
    URL http://link.aps.org/doi/10.1103/PhysRevLett.114.170502.
    [80] Fritz, T. Quantum correlations in the temporal clauserhorneshimonyholt
    (chsh) scenario. New Journal of Physics 12, 083055 (2010). URL http:
    //stacks.iop.org/1367-2630/12/i=8/a=083055.
    [81] Chen, Y.-N. et al. Temporal steering inequality. Phys. Rev. A 89, 032112
    (2014). URL http://link.aps.org/doi/10.1103/PhysRevA.89.032112.
    [82] Li, C.-M., Chen, Y.-N., Lambert, N., Chiu, C.-Y. & Nori, F. Certifying singlesystem
    steering for quantum-information processing. Phys. Rev. A 92, 062310
    (2015). URL http://link.aps.org/doi/10.1103/PhysRevA.92.062310.
    [83] Chen, S.-L. et al. Quantifying non-markovianity with temporal steering. Phys.
    Rev. Lett. 116, 020503 (2016). URL http://link.aps.org/doi/10.1103/
    PhysRevLett.116.020503.
    [84] Bartkiewicz, K., Cernoch, A., Lemr, K., Miranowicz, A. & Nori, F. Experimental
    temporal quantum steering. Scienti c Reports 6, 38076 (2016). URL
    http://dx.doi.org/10.1038/srep38076.
    [85] Ku, H.-Y. et al. Temporal steering in four dimensions with applications to
    coupled qubits and magnetoreception. Phys. Rev. A 94, 062126 (2016). URL
    http://link.aps.org/doi/10.1103/PhysRevA.94.062126.
    [86] Pironio, S. Aspects of quantum non-locality. PhD Thesis chapter
    1 (2004). URL http://quic.ulb.ac.be/_media/publications/
    2004-thesis-stefano.pdf.
    [87] Pearl, J. Causality ((Cambridge University Press, Cambridge, England,,
    2009).
    [88] P. Spirtes, N. G. & Scheienes, R. Causation, Prediction, and Search (MIT
    Press, Cambridge, MA, 2001), 2 edn.
    [89] Pironio, S., Scarani, V. & Vidick, T. Focus on device independent quantum
    information. New Journal of Physics 18, 100202 (2016). URL http:
    //stacks.iop.org/1367-2630/18/i=10/a=100202.
    [90] Pusey, M. F. Is quantum steering spooky? PhD Thesis page 45 (2013). URL
    http://hdl.handle.net/10044/1/12926.
    [91] Branciard, C., Cavalcanti, E. G., Walborn, S. P., Scarani, V. & Wiseman,
    H. M. One-sided device-independent quantum key distribution: Security, feasibility,
    and the connection with steering. Phys. Rev. A 85, 010301 (2012).
    URL http://link.aps.org/doi/10.1103/PhysRevA.85.010301.
    [92] Pusey, M. F. Negativity and steering: A stronger peres conjecture. Phys. Rev.
    A 88, 032313 (2013). URL http://link.aps.org/doi/10.1103/PhysRevA.
    88.032313.
    [93] Boyd, S. & Vandenberghe, L. Convex Optimization (Cambridge University
    Press, Cambridge, 2004), 1 edn.
    [94] Gisin, N. stochastic quantum dynamics and relativity. Phys. Acta 62,
    363{371 (1989). URL http://cms.unige.ch/gap/quantum/wiki/_media/
    publications:bib:stochqdynrel.pdf.
    [95] Hughston, L. P., Jozsa, R. & Wootters, W. K. A complete classi cation of
    quantum ensembles having a given density matrix. Phys. Lett. A 183, 14{18
    (1993). URL http://dx.doi.org/10.1016/0375-9601(93)90880-9.
    [96] Werner, R. F. Quantum states with Einstein-Podolsky-Rosen correlations
    admitting a hidden-variable model. Phys. Rev. A 40, 4277{4281 (1989). URL
    http://link.aps.org/doi/10.1103/PhysRevA.40.4277.
    [97] Navascu es, M., Pironio, S. & Ac n, A. Bounding the set of quantum correlations.
    Phys. Rev. Lett. 98, 010401 (2007). URL http://link.aps.org/doi/
    10.1103/PhysRevLett.98.010401.
    [98] Navascues, M., Pironio, S. & Acin, A. A convergent hierarchy of semide -
    nite programs characterizing the set of quantum correlations. New Journal of
    Physics 10, 073013 (2008). URL http://stacks.iop.org/1367-2630/10/
    i=7/a=073013.
    [99] Moroder, T., Bancal, J.-D., Liang, Y.-C., Hofmann, M. & Guhne, O. Deviceindependent
    entanglement quanti cation and related applications. Phys.
    Rev. Lett. 111, 030501 (2013). URL http://link.aps.org/doi/10.1103/
    PhysRevLett.111.030501.
    [100] Peres, A. Neumark's theorem and quantum inseparability. Foundations
    of Physics 20, 1441{1453 (1990). URL http://dx.doi.org/10.1007/
    BF01883517.
    [101] P al, K. F. & V ertesi, T. Maximal violation of a bipartite three-setting,
    two-outcome Bell inequality using in nite-dimensional quantum systems.
    Phys. Rev. A 82, 022116 (2010). URL http://link.aps.org/doi/10.1103/
    PhysRevA.82.022116.
    [102] Schwarz, S., Bessire, B., Stefanov, A. & Liang, Y.-C. Bipartite Bell inequalities
    with three ternary-outcome measurements - from theory to experiments.
    New Journal of Physics 18, 035001 (2016). URL http://stacks.iop.org/
    1367-2630/18/i=3/a=035001.
    [103] Chen, S.-L., Budroni, C., Liang, Y.-C. & Chen, Y.-N. Natural framework
    for device-independent quanti cation of quantum steerability, measurement
    incompatibility, and self-testing. Phys. Rev. Lett. 116, 240401 (2016). URL
    http://link.aps.org/doi/10.1103/PhysRevLett.116.240401.
    [104] Maroney, O. J. E. Detectability, invasiveness and the quantum three box
    paradox. arxiv:1207.3114 (2012). URL http://arxiv.org/abs/1207.3114.
    [105] Ko
    er, J. & Brukner, i. c. v. Condition for macroscopic realism beyond the
    leggett-garg inequalities. Phys. Rev. A 87, 052115 (2013). URL http://link.
    aps.org/doi/10.1103/PhysRevA.87.052115.
    [106] Emary, C., Lambert, N. & Nori, F. Leggettgarg inequalities. Reports
    on Progress in Physics 77, 016001 (2014). URL http://stacks.iop.org/
    0034-4885/77/i=1/a=016001.
    [107] Li, C.-M., Chen, Y.-N., Lambert, N., Chiu, C.-Y. & Nori, F. Witnessing
    Single-System Steering for Quantum Information Processing. arXiv:1411.3040
    (2014).
    [108] Breuer, H. P., Laine, E. M. & Piilo, J. Measure for the degree of non-Markovian
    behavior of quantum processes in open systems. Phys. Rev. Lett. 103,
    210401 (2009). URL http://link.aps.org/doi/10.1103/PhysRevLett.
    103.210401.
    [109] Rivas, A., Huelga, S. F. & Plenio, M. B. Entanglement and non-Markovianity
    of quantum evolutions. Phys. Rev. Lett. 105, 050403 (2010). URL http:
    //link.aps.org/doi/10.1103/PhysRevLett.105.050403.
    [110] Chru sci nski, D. & Maniscalco, S. Degree of non-Markovianity of quantum
    evolution. Phys. Rev. Lett. 112, 120404 (2014). URL http://link.aps.org/
    doi/10.1103/PhysRevLett.112.120404.
    [111] Laine, E. M., Piilo, J. & Breuer, H. P. Measure for the non-Markovianity of
    quantum processes. Phys. Rev. A 81, 062115 (2010). URL http://link.aps.
    org/doi/10.1103/PhysRevA.81.062115.
    [112] Ishizaki, A. & Fleming, G. R. Theoretical examination of quantum coherence
    in a photosynthetic system at physiological temperature. J. Chem. Phys. 130,
    234111 (2009).
    [113] Tanimura, Y. Nonperturbative expansion method for a quantum system coupled
    to a harmonic-oscillator bath. Phys. Rev. A 41, 6676 (1990). URL
    http://link.aps.org/doi/10.1103/PhysRevA.41.6676.
    [114] Yoshitaka, T. & Ryogo, K. Time evolution of a quantum system in contact
    with a nearly Gaussian-Marko an noise bath. J. Phys. Soc. Japan 58, 101
    (1989). URL http://dx.doi.org/10.1143/JPSJ.58.101.
    [115] Horodecki, R., Horodecki, P., Horodecki, M. & Horodecki, K. Quantum entanglement.
    Rev. Mod. Phys. 81, 865{942 (2009). URL http://link.aps.
    org/doi/10.1103/RevModPhys.81.865.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE