簡易檢索 / 詳目顯示

研究生: 楊震騰
Yang, Cheng-Teng
論文名稱: 自主無人船系統建立及導控效能驗證
Establishment and Control Effectiveness Verification of An Autonomous Unmanned Surface Vessel System
指導教授: 陳永裕
Chen, Yung-Yue
學位類別: 碩士
Master
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 154
中文關鍵詞: 非線性控制動態實船實驗參數辨識水動力建模自主水面載具
外文關鍵詞: Nonlinear Control, Full-scale Field Experiment, Parameter Identification, Hydrodynamic Modeling, Autonomous Unmanned Surface Vessel
相關次數: 點閱:24下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在發展一套適用於自主無人船(USV)的水動力係數辨識與強健運動控制整合系統。首先,針對傳統平面運動機構(PMM)水槽實驗的侷限性,提出以實船現地多自由度動態實驗為核心的資料蒐集流程,並利用高精度慣性導航系統(INS)於多種操控模式(直線、轉圈、zig-zag等)下取得加速度、速度、姿態等運動數據。經由濾波、特徵萃取及動態分段等資料前處理後,結合理論模型進行水動力參數辨識,並建立專屬的RBF神經網路以捕捉各項動力學係數的非線性關係。
    進一步地,本文設計一套結合自適應RBF神經網路與Lyapunov穩定性分析的非線性控制器,實現系統參數在線辨識及外部擾動即時補償。控制架構理論推導完整,並嚴謹證明追蹤誤差與參數辨識誤差皆可漸進收斂,確保控制系統之強健性與穩定性。最後,透過數值模擬驗證所提模型與控制方法於不同工況下皆具備高精度軌跡追蹤與動態適應能力。
    本研究成果證實,所提資料驅動之水動力參數辨識流程及自適應控制架構,可顯著提升自主無人船於複雜環境下之建模精度與運動控制效能,對智慧型海洋載具實地應用與後續技術發展具有重要參考價值。

    This thesis presents an integrated framework for hydrodynamic parameter identification and robust nonlinear control of autonomous unmanned surface vessels (USVs). To overcome the limitations of traditional planar motion mechanism (PMM) tank experiments, a full-scale, field-oriented data acquisition procedure is developed, leveraging high-precision inertial navigation system (INS) measurements under various maneuvering modes (e.g., straight-line, turning circle, and zig-zag). Through systematic data preprocessing—including filtering, feature extraction, and segment selection—combined with theoretical modeling, key hydrodynamic coefficients are identified and captured using dedicated radial basis function (RBF) neural networks to characterize nonlinear dynamics.
    A nonlinear adaptive controller, incorporating RBF neural network estimation and Lyapunov-based stability analysis, is then designed to achieve online parameter identification and real-time disturbance compensation. Rigorous theoretical proofs demonstrate that the proposed control scheme guarantees convergence of both tracking and identification errors, ensuring system robustness and stability. Numerical simulations confirm that the proposed modeling and control approach enables accurate trajectory tracking and dynamic adaptation under various environmental conditions.
    The results demonstrate that the proposed data-driven parameter identification and adaptive control framework significantly enhances modeling accuracy and control performance of USVs in complex maritime environments, providing a valuable foundation for the practical deployment and future development of intelligent marine vehicles.

    摘要 i 致謝 xiv 目錄 xv 圖目錄 xvii 表目錄 xxv 1 第一章 緒論 1 1.1 研究背景 1 1.2 文獻回顧與探討 2 1.3 研究動機和目標 3 1.4 論文架構 3 2 第二章 自主水面無人載具系統建立 5 2.1 平台整體架構與設計理念與目標 5 2.2 慣性導航系統與推進器選擇 7 2.2.1 慣性導航系統(INS/GNSS)選擇與規格 7 2.2.2 水下推進器選擇理由 8 3 第三章 水動力系統建模 10 3.1 動態數學模型 10 3.1.1 非線性操縱運動方程式 10 3.1.2 水上載具的慣性矩陣 11 3.1.3 科氏力與離心力矩陣 12 3.1.4 流體阻尼矩陣 12 3.1.5 動態方程之參數化形式 12 3.2 資料蒐集 13 3.3 自適應RBF方程式推導 17 3.3.1 徑向基底函數(RBF)網路 17 3.3.2 各係數求法 23 4 第四章 效能驗證方法與建置 26 4.1 目標 26 4.2 軌跡產生器 26 4.3 控制器選擇與設計 29 5 第五章 效能結果 34 5.1 自適應RBF擬合結果 34 5.2 控制結果 46 5.2.1 情境一 46 5.2.2 情境二 71 5.2.3 情境三 95 5.3 結論 120 6 第六章 結論 121 6.1 研究成果總結 121 6.2 未來展望 121 參考文獻 123

    [1] 伊莎貝兒·格雷特森(Isabelle Gerretsen),「NASA美國太空總署為何不但上天還要下海?」BBC中文網,2022年2月1日。 [線上]. Available: https://www.bbc.com/zhongwen/trad/science-60125571 (accessed July 22, 2025).
    [2] Allianz Global Corporate & Specialty, “It is estimated that 75% to 96% of marine accidents can involve human error.” [Online]. Available: https://www.agcs.allianz.com/news-and-insights/expert-risk-articles/human-error-shipping-safety.html (accessed June 2019).
    [3] Fortune Business Insights, “The global autonomous ships market is expected to grow from USD 6.55 billion in 2021 to USD 12.07 billion in 2028 at a CAGR of 9.13%.” [Online]. Available: https://www.fortunebusinessinsights.com/industry-reports/autonomous-ship-market-101797 (accessed Feb. 2022).
    [4] HD Hyundai, “HD Hyundai’s Avikus Successfully Conducts the World’s First Transoceanic Voyage of a Large Merchant Ship Relying on Autonomous Navigation Technologies,” 2022.
    [5] T. I. Fossen, "Handbook of Marine Craft Hydrodynamics and Motion Control," 2011.
    [6] ITTC – Specialist Committee on Energy Saving Methods, Resistance and Propulsion Test and Performance Prediction with Skin Frictional Drag Reduction Techniques, ITTC Recommended Procedures and Guidelines, 7.5-02-02-03, 28th ITTC, pp. 1–12, 2017. [Online]. Available: https://ittc.info/media/8017/75-02-02-03.pdf
    [7] Martins, R. et al., "Hydrodynamic parameter identification for full-scale USVs," 2022.
    [8] J. Yue, L. Liu, N. Gu, Z. Peng, D. Wang, and Y. Dong, "Online adaptive parameter identification of an unmanned surface vehicle without persistency of excitation," Ocean Engineering, vol. 250, p. 110232, Apr. 2022. doi: 10.1016/j.oceaneng.2021.110232
    [9] P. F. Xu, C. Cheng, H. X. Cheng, Y. L. Shen, and Y. X. Ding, “Identification-based 3 DOF model of unmanned surface vehicle using support vector machines enhanced by cuckoo search algorithm,” Ocean Engineering, vol. 197, p. 106898, 2020. [Online]. Available: https://doi.org/10.1016/j.oceaneng.2019.106898
    [10] J. Fei, Z. Wang, X. Lu, and L. Deng, "Adaptive RBF neural network control based on sliding mode controller for active power filter," in Proceedings of the 32nd Chinese Control Conference, 2013, pp. 6501–6505. doi: 10.1109/ChiCC.2013.6639988
    [11] T. I. Fossen, Guidance and Control of Ocean Vehicles. Chichester, UK: Wiley, 1994.
    [12] P. A. Ioannou and J. Sun, "Robust Adaptive Control," 2nd Ed., Dover Publications, 2012.
    [13] C. M. Bishop, "Neural Networks for Pattern Recognition," Oxford University Press, 1995.
    [14] S. Chen, C. F. N. Cowan, and P. M. Grant, "Orthogonal least squares learning algorithm for radial basis function networks," IEEE Transactions on Neural Networks, vol. 2, no. 2, pp. 302–309, 1991. [Online]. Available: https://doi.org/10.1109/72.80341
    [15] S. Haykin, "Neural Networks: A Comprehensive Foundation," 2nd Ed., Prentice Hall, 1999.
    [16] Chen, Y.-Y.; Tsao, C.-H.; Liu, K.-H and Huang, Y.-X.;, “CONTROL SYSTEM DESIGN FOR UNDERWATER VEHICLES WITH ACTUATOR CONSTRAINTS”. Journal of Taiwan Society of Naval Architects and Marine Engineers. vol. 41, no. 2, pp. 77-90, 2022.
    [17] S. H. Żak, "Systems and Control," New York, NY, USA: Oxford University Press, 2003.
    [18] Y.-Y. Chen, C.-H. Tsao, K.-H. Liu, and Y.-X. Huang, "Control system design for underwater vehicles with actuator constraints," Journal of Taiwan Society of Naval Architects and Marine Engineers, vol. 41, no. 2, pp. 77-90, 2022.
    [19] A. Lovo-Ayala, R. Soto-Diaz, C. A. Gutierrez-Martinez, J. F. Jimenez-Vargas, J. Jiménez-Cabas, and J. Escorcía-Gutierrez, “Simplified Model Characterization and Control of an Unmanned Surface Vehicle,” Journal of Marine Science and Engineering, vol. 13, no. 4, p. 813, Apr. 2025. [Online]. Available: https://doi.org/10.3390/jmse13040813
    [20] Z. Han, Y. Wang, and Q. Sun, “Straight-Path Following and Formation Control of USVs Using Distributed Deep Reinforcement Learning and Adaptive Neural Network,” IEEE/CAA Journal of Automatica Sinica, vol. 10, no. 2, pp. 572–574, Feb. 2023. [Online]. Available: https://doi.org/10.1109/JAS.2023.123255
    [21] H. Qin, X. Chen, and Y. Sun, "Adaptive state-constrained trajectory tracking control of unmanned surface vessel with actuator saturation based on RBFNN and tan-type barrier Lyapunov function," Ocean Engineering, vol. 253, 2022, Art. no. 110966. [Online]. Available: https://doi.org/10.1016/j.oceaneng.2022.110966
    [22] J. Amini Foroushani and M. Sabzpooshani, "An approach for the estimation of hydrodynamic coefficients of an underwater vehicle in off-design velocities based on an improved RBF neural network," Journal of Marine Science and Technology, vol. 25, pp. 1–18, 2020. [Online]. Available: https://doi.org/10.1007/s00773-020-00740-7
    [23] D. Liu, J. Liu, C. Sun, and B. Dai, "Convex Optimization-Based Adaptive Neural Network Control for Unmanned Surface Vehicles Considering Moving Obstacles," Journal of Marine Science and Engineering, vol. 13, no. 3, p. 587, 2025. [Online]. Available: https://doi.org/10.3390/jmse13030587
    [24] Y. Chen and H. Chen, "Prescribed performance control of underactuated surface vessels’ trajectory using a neural network and integral time-delay sliding mode," Kybernetika, vol. 59, no. 2, pp. 273–293, 2023. [Online]. Available: https://doi.org/10.14736/kyb-2023-2-0273
    [25] H. Bao, H. Zhu, and D. Liu, "Research on hydrodynamic modeling and simulation of streamlined autonomous underwater vehicle based on CFD method," in Proc. 2023 Chinese Control and Decision Conference (CCDC), 2023. [Online]. Available: https://doi.org/10.1109/CCDC58219.2023.10327061
    [26] J. Li, G. Zhang, and B. Li, "Robust adaptive neural cooperative control for the USV-UAV based on the LVS-LVA guidance principle," Journal of Marine Science and Engineering, vol. 10, no. 1, p. 51, 2022. [Online]. Available: https://doi.org/10.3390/jmse10010051
    [27] X. Wang, X. Yin, and F. Shen, "Robust adaptive neural tracking control for a class of nonlinear systems with unmodeled dynamics using disturbance observer," Neurocomputing, vol. 292, pp. 49–62, 2018. [Online]. Available: https://doi.org/10.1016/j.neucom.2018.02.082

    無法下載圖示 校內:2030-08-19公開
    校外:2030-08-19公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE