簡易檢索 / 詳目顯示

研究生: 莊雅竹
Chuang, Ya-Chu
論文名稱: 白蝦類專一性免疫作用分子 Dscam 之蛋白質特性分析
Characterization of the putative invertebrate alternative adaptive immune protein Dscam from Litopenaeus vannamei
指導教授: 王涵青
Wang, Han-Ching Kc
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生物科技研究所
Institute of Biotechnology
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 88
中文關鍵詞: 專一性先天免疫機制白蝦Dscam體外表現蛋白質定位分析胞質尾
外文關鍵詞: Innate immunity with specificity, Litopenaeus vannamei, Dscam, in vitro cellular localization, cytoplasmic tail
相關次數: 點閱:106下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 無脊椎動物唐氏綜合症黏附分子 (Dscam) 除了參與胚胎時期的神經引導機制,也可能參與專一性先天免疫機制。典型 Dscam 為鑲膜型,係由胞外區與胞質尾組成,胞外區域與其結合對象專一性有關,胞質尾組成則與後續引發的細胞反應相關。第一個蝦類 Dscam 於 2009 年從白蝦被鑑定出,其命名為 LvDscam,為特殊缺乏胞質尾的胞泌型,在不同的 WSSV 感染狀況下,LvDscam 的胞外變異區呈現特定的表現趨勢,推測其以類似脊椎動物抗體的機制辨識 WSSV。而接後屬於鑲膜型的蝦類 Dscam 也於草蝦中發現,其具有不同其他節肢動物之多變性胞質尾。由於蝦類 Dscam 具有上述的特殊性,本研究則針對其胞質尾存在與否對於 Dscam 蛋白質表現型態的差異進行探討,希望進而推論其是否與 Dscam 分泌及回歸細胞的機制有所相關性
    在本研究中,我們選擇了四種分泌型 LvDscam isoform 進行蛋白質特性分析,其中 isoform 7 為未感染 WSSV 之白蝦蝦血球細胞中,表現量較高的一種 isoform,isoform 18 、 19 、 20 則是 WSSV 潛伏性感染下,白蝦蝦血球中表現量較高的三種 isoforms。
    由於蝦類尚未有細胞株,本研究利用昆蟲細胞株進行重組 LvDscam 蛋白質表現 ,從中得以分析 LvDscam 蛋白質特性。所得結果顯示分泌型 LvDscam 似乎以液泡型式表現在胞質液與細胞膜,並可分泌至胞外,且此種特性並不因為 isoform 的不同而有所差異。另外,鑲膜型 LvDscam 的胞質尾部份組成元素與草蝦 Dscam 胞質尾有著極高的相似性,顯示此多變型胞質尾普遍存在於蝦類。以穿膜型胞質尾構築在胞泌型 LvDscam 上組成鑲膜型 LvDscam,我們將分析其與胞內表現位置與胞外分泌能力來釐清胞質尾在 LvDscam 所扮演的功能。
    此研究提供了第一個蝦類 Dscam 蛋白質特性資訊,希望未來可進一步瞭解 LvDscam 的分泌特性及其與病原體的專一性結合現象。

    Invertebrate Down syndrome cell adhesion molecule (Dscam) seems to play key roles in neuron guidance and “innate immunity with specificity”. The extracellular region of Dscam is involved in heterophilic binding specificity and pathogen recognition while the cytoplasmic tail is involved in subsequent signal transduction. In 2009, Litopenaeus vannamei Dscam (LvDscam) with extraordinary molecular diversity was identified and shown a unique tail-less secreted form. In particular, at different WSSV-infected situations, the specific population of LvDscam isoforms was appeared. These isoforms might play antibody-like function. The membrane-bound shrimp Dscam was first identified from Penaeus monodon with the cytoplasmic tail with extra hypervariable ability. Because of this uniqueness of shrimp Dscam, we investigated the characteristics of shrimp Dscam protein using the recombinant protein expression system in alternative cell line. This observation may help us to clarify the interaction between shrimp Dscam and cell.
    Four tail-less secreted shrimp Dscam isoforms were selected to analyze the protein characteristics. Isoform 7 is the highest expressed isoform in heamocyte of WSSV-free shrimp, while isoforms 18, 19, and 20 are the redundant isoforms isolated from WSSV-persistent shrimp. Because shrimp cell line has not yet been established, we set to the expression platform of recombinant shrimp Dscam (rLvDscam) in Spodoptera frugiperda (Sf9) cells using baculovirus expression system and the transfection system. The cellular localization patterns of recombinant tail-less Dscam (rLvDscam) in insect cells show that rLvDscam may localize both in vesicles in cytoplasm and cell membrane. Some vesicles containing rLvDscam may involve in the processes of endocytosis or exocytosis. Moreover, tail-less rLvDscam can be secreted. Based on these information, we propose a model of how the tail-less LvDscam return cell. For membrane-bound shrimp Dscam, using the alignment of the cytoplasmic tail elements of PmDscam and LvDscam, the high identity was observed (97.78%). We’ll further analysis the localization and secreted-ability of the membrane-bound rLvDscam.
    The study provides the first information about shrimp Dscam protein. In future, we hope to find the evidence supporting the Dscam involvement in the invertebrate innate immunity with specificity.

    中文摘要…………………………………………………………………I 英文摘要…………………………………………………………………III 致謝………………………………………………………………………IV 目錄………………………………………………………………………V 表目錄……………………………………………………………………VI 圖目錄……………………………………………………………………VII 研究計畫之背景………………………………………………………… 1 研究計畫之目的…………………………………………………………14 研究方法及進行步驟……………………………………………………15 結果………………………………………………………………………38 討論………………………………………………………………………49 參考文獻…………………………………………………………………59 表…………………………………………………………………………64 圖…………………………………………………………………………65 補充資料…………………………………………………………………83

    Barrow AD, Trowsdale J. (2006) You say ITAM and I say ITIM, let's call the whole thing off: the ambiguity of immunoreceptor signalling. European journal of immunology. 36:1646-1653.
    Boehm T. (2007) Two in one: dual function of an invertebrate antigen receptor. Nature Immunology. 8:1031-1033.
    Boulanger LM. (2009) Immune proteins in brain development and synaptic plasticity. Neuron. 64:93-109.
    Brites D, McTaggart S, Morris K, Anderson J, Thomas K, Colson I, Fabbro T, Little TJ, Ebert D, Du Pasquier L. (2008) The Dscam homologue of the crustacean Daphnia is diversified by alternative splicing like in insects. Molecular biology and evolution. 25:1429-1439.
    Cerenius L, Lee BL, Söderhäll K. (2008) The proPO-system: pros and cons for its role in invertebrate immunity. Trends Immunol. 29:263-71.
    Chen BE, Kondo M, Garnier A, Watson FL, Püettmann-Holgado R, Lamar DR, Schmucker D. (2006) The molecular diversity of Dscam is functionally required for neuronal wiring specificity in Drosophila. Cell. 125:607-620.
    Chen SN. (1996) Current status of trade in cultured shrimps. Revue Scientifique et Technique. 15:517-521.
    Chou PH, Chang HS, Chen IT, Lin HY, Chen YM, Yang HL, Wang KC. (2009) The putative invertebrate adaptive immune protein Litopenaeus vannamei Dscam (LvDscam) is the first reported Dscam to lack a transmembrane domain and cytoplasmic tail. Developmental and Comparative Immunology. 33:1258-1267.
    Chou PH, Chang HS, Chen IT, Lee CW, Hung HY, Han-Ching Wang KC. (2011) Penaeus monodon Dscam (PmDscam) has a highly diverse cytoplasmic tail and is the first membrane-bound shrimp Dscam to be reported. Fish Shellfish Immunol. 30:1109-23.
    Crayton ME 3rd, Powell BC, Vision TJ, Giddings MC. (2006) Tracking the evolution of alternatively spliced exons within the Dscam family. BMC evolutionary biology. 6:16.
    Durand S., Lightner DV, Redman RM, Bonami JR. (1997) Ultrastructure and morphogenesis of white spot syndrome baculovirus (WSSV). Diseases of Aquatic Organisms. 29:205–211.
    Escobedo-Bonilla CM, Alday-Sanz V, Wille M, Sorgeloos P, Pensaert MB, Nauwynck HJ. (2008) A review on the morphology, molecular characterization, morphogenesis and pathogenesis of white spot syndrome virus. Journal of Fish Diseases. 31:1-18.
    Fang He, YuenFern Ho, Li Yu1 and Jimmy Kwang. (2008) WSSV ie1 promoter is more efficient than CMV promoter to express H5 hemagglutinin from influenza virus in baculovirus as a chicken vaccine. BMC Microbiology. 8:238-248.
    Fuerst PG, Koizumi A, Masland RH, Burgess RW. (2008) Neurite arborization and mosaic spacing in the mouse retina require DSCAM. Nature. 451:470-474.
    Fuerst PG, Bruce F, Tian M, Wei W, Elstrott J, Feller MB, Erskine L, Singer JH, Burgess RW. (2009) DSCAM and DSCAML1 function in self-avoidance in multiple cell types in the developing mouse retina. Neuron. 64:484-497.
    He F, Ho Y, Yu L, Kwang J. (2008) WSSV ie1 promoter is more efficient than CMV promoter to express H5 hemagglutinin from influenza virus in baculovirus as a chicken vaccine. BMC Microbiol.8:238.
    Hauton C, Smith VJ. (2007) Adaptive immunity in invertebrates: a straw house without a mechanistic foundation. Bioessays. 29:1138-1146.
    Huang CH, Zhang LR, Zhang JH, Xiao LH, Wu QJ, Chen DH, Li JKK. (2001) Purification and characterization of white spot syndrome virus (WSSV) produced in an alternate host: crayfish, Cambarus clarkii. Virus Research. 76:115-125.
    Hughes ME, Bortnick R, Tsubouchi A, Bäumer P, Kondo M, Uemura T, Schmucker D. (2007) Homophilic Dscam interactions control complex dendrite morphogenesis. Neuron. 54:417-427.
    Iwanaga S, Lee BL. (2005) Recent advances in the innate immunity of invertebrate animals. J Biochem Mol Biol. 38:128-50.
    Jiravanichpaisal P, Söderhäll K, Söderhäll I. (2004) Effect of water temperature on the immune response and infectivity pattern of white spot syndrome virus (WSSV) in freshwater crayfish. Fish Shellfish Immunology. 17:265-275.
    Johnson PT. (1987) A review of fixed phagocytic and pinocytotic cells of decapod crustaceans, with remarks on hemocytes. Dev Comp Immunol. 11:679-704.
    Kurtz J, Franz K. (2003) Innate defence: evidence for memory in invertebrate immunity. Nature. 425:37-38.
    Leu JH, Tsai JM, Wang HC, Wang AH, Wang CH, Kou GH, Lo CF. (2005) The unique stacked rings in the nucleocapsid of the white spot syndrome virus virion are formed by the major structural protein VP664, the largest viral structural protein ever found. Journal of virology. 79:140-149.
    Leu JH, Yang F, Zhang X, Xu X, Kou GH, Lo CF. (2009) Whispovirus. Current topics in microbiology and immunology. 328:197-227.
    Li W and Guan KL. (2004) The Down syndrome cell adhesion molecule (DSCAM) interacts with and activates Pak. The Journal of Biologucal Chemistry. 279:32824-32831.
    Lin ST, Chang YS, Wang HC, Tzeng HF, Chang ZF, Lin JY. (2002) Ribonucleotide reductase of shrimp white spot syndrome virus (WSSV): expression and enzymatic activity in a baculovirus/insect cell system and WSSV-infected shrimp. Virology. 304:282-290.
    Lundquist EA, Reddien PW, Hartwieg E, Horvitz HR, Bargmann CI. (2001) Three C. elegans Rac proteins and several alternative Rac regulators control axon guidance, cell migration, and apoptotic cell phagocytosis. Development. 128:4475-4488.
    Pham LN, Dionne MS, Shirasu-Hiza M, Schneider DS. (2007) A specific primed immune response in Drosophila is dependent on phagocytes. PLoS Pathogens. 3:26.
    Pin-Hsiang Chou, Hao-Shuo Chang, I-Tung Chen, Chung-Wei Lee, Hsin-Yi Hung, K.C. Han-Ching Wang. (2011) Penaeus monodon Dscam (PmDscam) has a highly diverse cytoplasmic tail and is the first membrane-bound shrimp Dscam to be reported. Fish and Shellfish Immunology. 30:1109-1123.
    Razandi M, Alton G, Pedram A, Ghonshani S, Webb P, Levin ER. (2003) Identification of a structural determinant necessary for the localization and function of estrogen receptor alpha at the plasma membrane. Molecular and Cellular Biology 23:1633-1646.
    Rowley AF, Powell A. (2007) Invertebrate immune systems specific, quasi-specific, or nonspecific. Journal of Immunology. 179:7209-14
    Sawaya MR, Wojtowicz WM, Andre I, Qian B, Wu W, Baker D, Eisenberg D, Zipursky SL. (2008) A double S shape provides the structural basis for the extraordinary binding specificity of Dscam isoforms. Cell. 134:1007-1018.
    Schmucker D, Clemens JC, Shu H, Worby CA, Xiao J, Muda M, Dixon JE, Zipursky SL. (2000) Drosophila Dscam is an axon guidance receptor exhibiting extraordinary molecular diversity. Cell. 101:671-684.
    Schulenburg H, Boehnisch C, Michiels NK. (2007) How do invertebrates generate a highly specific innate immune response? Molecular Immunology. 44:3338-3344.
    Stet RJ, Arts JA. (2005) Immune functions in crustaceans: lessons from flies. Dev Biol (Basel). 121:33-43.
    Stuart LM, Ezekowitz RA. (2008) Phagocytosis and comparative innate immunity: learning on the fly. Nature reviews. Immunology. 8:131-141.
    Tsai VM, Wang HC, Leu JH, Wang AH, Zhaung Y, Walker P, Kou GH, Lo CF. (2006) Identification of the Nucleocapsid, Tegument, and Envelope Proteins of the Shrimp White Spot Syndrome Virus Virion. Journal of Virology. 80:3021-3029.
    Takehiko U, Kristen L, Satoshi T, Naoaki S, Thomas LL. (2007) Subcellular localization and function of alternatively spliced Noxo1 isoforms. Free Radical Biology and Medicine. 42:180-190.
    Vazquez L, Alpuche J, Maldonado G, Agundis C, Pereyra-Morales A, Zenteno E. (2009) Review: Immunity mechanisms in crustaceans. Innate Immun. 15:179-88.
    Virginia B, John HH, David AR, Audrey JM, Young-Ok K and L. Courtney S. (2008) Localization and diversity of 185/333 proteins from the purple sea urchin-unexpected protein-size range and protein expression in a new coelomocyte type. Cell Science. 121:339-348.
    Völgyi B, Chheda S, Bloomfield SA. (2009) Tracer coupling patterns of the ganglion cell subtypes in the mouse retina. Comparative Neurology and Psychology. 512:664-687.
    Watson FL, Püttmann-Holgado R, Thomas F, Lamar DL, Hughes M, Kondo M, Rebel VI, Schmucker D. (2005) Extensive diversity of Ig-superfamily proteins in the immune system of insects. Science. 309:1874-1878
    Xie X, Yang F. (2005) Interaction of white spot syndrome virus VP26 protein with actin. Virology. 336:93-99.
    Yamagata M, Sanes JR. (2008) Dscam and Sidekick proteins direct lamina-specific synaptic connections in vertebrate retina. Nature. 451:465-469.
    Yi G, Wang Z, Qi Y, Yao L, Qian J, Hu L. (2004) VP28 of shrimp white spot syndrome virus is involved in the attachment and penetration into shrimp cells. J Biochem Molecular Biology. 37:726-734.
    Yuemei D, Harry ET, George D. (2006) AgDscam, a Hypervariable Immunoglobulin Domain-Containing Receptor of the Anopheles gambiae Innate Immune System. PLoS Biology. 4:1137-1146.
    Zhuang S, Kelo L, Nardi JB, and Kanost MR. (2008) Multiple α subunits of integrin are involved in cell-mediated responses of the Manduca immune system. Developmental and Comparative Immunology. 32:365-379.
    Zubkova OV, Logunov DIu, Karpov AP, Shmarov MM, Belousova RV, Naroditskiĭ BS. (2009) Influence of integrin-binding motif (RGD) on attachment and internalization of avian adenovirus CELO in mammalian cells. Molekuliarnaia genetika, mikrobiologiia i virusologiia. 2:32-36.

    下載圖示 校內:2014-08-31公開
    校外:2014-08-31公開
    QR CODE