| 研究生: |
朱家弘 Chu, Chia-Hung |
|---|---|
| 論文名稱: |
針對VDJ重組序列開發一較佳之序列比對工具 Developing a better alignment tool for VDJ recombined sequences |
| 指導教授: |
劉宗霖
Liu, Tsung-Lin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生物資訊與訊息傳遞研究所 Insitute of Bioinformatics and Biosignal Transduction |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 58 |
| 中文關鍵詞: | T細胞受體 (TCR) 、VDJ重組 、序列比對 |
| 外文關鍵詞: | T cell receptor(TCR), VDJ recombination, sequence alignment |
| 相關次數: | 點閱:132 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
T cell receptor (TCR)可與抗原呈現細胞(MHC)共同辨認抗原並引起免疫反應。為了辨認大量的抗原,TCR會進行VDJ重組(VDJ recombination)來達到結構之多樣性。除了在免疫系統中有重要功能之外, VDJ重組對於疾病診斷和疫苗發展有很大關係。因此,將重組後的TCR序列比對至TCR基因上,以確定正確的VDJ組合,對於預防或治療疾病是很重要的。因為TCR基因上包含很多重複片段(Repeat),一般的序列比對工具並不適用。因此,一些新的工具如SoDA與IMGT/HighV-Quest被提出,為針對重組後的TCR 序列的比對。測試許多資料後,我們仍然發現這些工具還是有不足的地方,因為他們序列比對的結果相似性(identity)都很低。這促使我們去開發一個更好的比對工具,稱為TCR-Aligner。TCR-Aligner整合了許多計算方法例如BLAST local alignment、global alignment及depth-first-search (DFS),來提高比對重組後的TCR序列的準確性與靈敏度。在我們454定序TCRB的資料中,TCR-Aligner可以決定84.51%序列的VJ組合,高於SoDA (48.31%)和 IMGT/HighV-Quest ( 36.80%),表示TCR-Aligner比對序列的靈敏度較高。更重要的為TCR-Aligner在序列比對的正確性最高。我們測試了四組定序資料中,TCR-Aligner的靈敏度與準確性均優於其他工具。由於VDJ重組對於免疫系統扮演很重要的角色,TCR-Aligner對於研究VDJ重組的領域應該會有很大的幫助。
T-cell receptor (TCR) can recognize antigen presented by major histocompatibility complex (MHC) and activate immune reactions. To recognize numerous antigens, T-cell receptor undergoes VDJ recombination for diverse structures. In addition to its vital roles in immune response, VDJ recombination has been implicated in disease diagnosis and vaccination. It is thus important to identify correct VDJ recombination for recombined TCR sequences by aligning them to the TCR genes. Because TCR genes contain a lot of repeats, common alignment tools are not suitable. As a result, new tools like SoDA and IMGT/HighV-Quest, have been recently proposed to align recombined TCR sequences. On several datasets, we found that some alignments by these tools were still not satisfying because the alignment identities were low. This motivated us to develop a better alignment tool, called TCR-Aligner. TCR-Aligner integrates several computational methods, e.g., BLAST local alignment, global alignment, and depth-first-search algorithm, to improve accuracy and sensitivity for aligning recombined TCR sequences. On our 454 TCRB datasets, TCR-Aligner aligned 84.51% recombined TCR sequences to the TCR gene higher than SoDA and IMGT/HighV-Quest (48.31% and 36.80%) did, respectively. More importantly, TCR-Aligner achieved higher alignment accuracy than other tools. The better performance of TCR-Aligner remained on three other datasets of distinct natures. Because VDJ recombination is essential in immune system, TCR-Aligner should directly benefit scientists in this field.
[1] P. J. B. Mark M. Davis, "T-cell antigen receptor genes and T-cell recognition," Nature, vol. 334, 1988.
[2] Wikidoc.http://www.wikidoc.org/index.php/T_cell_receptor. Available: http://www.wikidoc.org/index.php/File:Antigen_presentation.jpg
[3] D. J. N. Dr Gene Mayer. MAJOR HISTOCOMPATIBILITY COMPLEX (MHC) AND T-CELL RECEPTORS - ROLE IN IMMUNE RESPONSES. Available: http://pathmicro.med.sc.edu/bowers/mhc.htm
[4] F. W. Alt, E. M. Oltz, F. Young, J. Gorman, G. Taccioli, and J. Chen, "VDJ recombination," Immunol Today, vol. 13, pp. 306-14, Aug 1992.
[5] D. G. Schatz and Y. Ji, "Recombination centres and the orchestration of V(D)J recombination," Nat Rev Immunol, vol. 11, pp. 251-63, Apr 2011.
[6] D. G. Schatz, M. A. Oettinger, and M. S. Schlissel, "V(D)J recombination: molecular biology and regulation," Annu Rev Immunol, vol. 10, pp. 359-83, 1992.
[7] S. Huck, P. Dariavach, and M. P. Lefranc, "Variable region genes in the human T-cell rearranging gamma (TRG) locus: V-J junction and homology with the mouse genes," EMBO J, vol. 7, pp. 719-26, Mar 1988.
[8] N. R. Landau, T. P. St John, I. L. Weissman, S. C. Wolf, A. E. Silverstone, and D. Baltimore, "Cloning of terminal transferase cDNA by antibody screening," Proc Natl Acad Sci U S A, vol. 81, pp. 5836-40, Sep 1984.
[9] C. Chothia, D. R. Boswell, and A. M. Lesk, "The outline structure of the T-cell alpha beta receptor," EMBO J, vol. 7, pp. 3745-55, Dec 1 1988.
[10] J. M. Claverie, A. Prochnicka-Chalufour, and L. Bougueleret, "Implications of a Fab-like structure for the T-cell receptor," Immunol Today, vol. 10, pp. 10-4, Jan 1989.
[11] R. L. Warren, J. D. Freeman, T. Zeng, G. Choe, S. Munro, R. Moore, et al., "Exhaustive T-cell repertoire sequencing of human peripheral blood samples reveals signatures of antigen selection and a directly measured repertoire size of at least 1 million clonotypes," Genome Res, vol. 21, pp. 790-7, May 2011.
[12] E. Hodges, M. T. Krishna, C. Pickard, and J. L. Smith, "Diagnostic role of tests for T cell receptor (TCR) genes," J Clin Pathol, vol. 56, pp. 1-11, Jan 2003.
[13] B. F. K. Lee Rowen, Leroy Hood, "The Complete 685-Kilobase DNA Sequence of the Human β T Cell Receptor Locus," 1996.
[14] F. Serana, A. Sottini, L. Caimi, B. Palermo, P. G. Natali, P. Nistico, et al., "Identification of a public CDR3 motif and a biased utilization of T-cell receptor V beta and J beta chains in HLA-A2/Melan-A-specific T-cell clonotypes of melanoma patients," J Transl Med, vol. 7, p. 21, 2009.
[15] V. Venturi, H. Y. Chin, T. E. Asher, K. Ladell, P. Scheinberg, E. Bornstein, et al., "TCR beta-chain sharing in human CD8+ T cell responses to cytomegalovirus and EBV," J Immunol, vol. 181, pp. 7853-62, Dec 1 2008.
[16] M. Yassai, D. Bosenko, M. Unruh, G. Zacharias, E. Reed, W. Demos, et al., "Naive T cell repertoire skewing in HLA-A2 individuals by a specialized rearrangement mechanism results in public memory clonotypes," J Immunol, vol. 186, pp. 2970-7, Mar 1 2011.
[17] J. J. Miles, D. C. Douek, and D. A. Price, "Bias in the alphabeta T-cell repertoire: implications for disease pathogenesis and vaccination," Immunol Cell Biol, vol. 89, pp. 375-87, Mar 2011.
[18] J. J. van Dongen, A. W. Langerak, M. Bruggemann, P. A. Evans, M. Hummel, F. L. Lavender, et al., "Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action BMH4-CT98-3936," Leukemia, vol. 17, pp. 2257-317, Dec 2003.
[19] J. Shendure and H. Ji, "Next-generation DNA sequencing," Nat Biotechnol, vol. 26, pp. 1135-45, Oct 2008.
[20] J. M. Volpe, L. G. Cowell, and T. B. Kepler, "SoDA: implementation of a 3D alignment algorithm for inference of antigen receptor recombinations," Bioinformatics, vol. 22, pp. 438-44, Feb 15 2006.
[21] E. Alamyar, P. Duroux, M. P. Lefranc, and V. Giudicelli, "IMGT((R)) tools for the nucleotide analysis of immunoglobulin (IG) and T cell receptor (TR) V-(D)-J repertoires, polymorphisms, and IG mutations: IMGT/V-QUEST and IMGT/HighV-QUEST for NGS," Methods Mol Biol, vol. 882, pp. 569-604, 2012.
[22] E. Alamyar, V. Giudicelli, S. Li, P. Duroux, and M. P. Lefranc, "IMGT/HighV-QUEST: the IMGT(R) web portal for immunoglobulin (IG) or antibody and T cell receptor (TR) analysis from NGS high throughput and deep sequencing," Immunome Res, vol. 8, p. 26, 2012.
[23] V. Giudicelli, D. Chaume, and M. P. Lefranc, "IMGT/V-QUEST, an integrated software program for immunoglobulin and T cell receptor V-J and V-D-J rearrangement analysis," Nucleic Acids Res, vol. 32, pp. W435-40, Jul 1 2004.
[24] N. Thomas, J. Heather, W. Ndifon, J. Shawe-Taylor, and B. Chain, "Decombinator: a tool for fast, efficient gene assignment in T-cell receptor sequences using a finite state machine," Bioinformatics, vol. 29, pp. 542-50, Mar 1 2013.
[25] T. F. Smith and M. S. Waterman, "Identification of common molecular subsequences," J Mol Biol, vol. 147, pp. 195-7, Mar 25 1981.
[26] A. V. Aho and M. J. Corasick, "Efficient String Matching - Aid to Bibliographic Search," Communications of the Acm, vol. 18, pp. 333-340, 1975.
[27] T. Magoc and S. L. Salzberg, "FLASH: fast length adjustment of short reads to improve genome assemblies," Bioinformatics, vol. 27, pp. 2957-63, Nov 1 2011.
[28] C. Wang, C. M. Sanders, Q. Yang, H. W. Schroeder, Jr., E. Wang, F. Babrzadeh, et al., "High throughput sequencing reveals a complex pattern of dynamic interrelationships among human T cell subsets," Proc Natl Acad Sci U S A, vol. 107, pp. 1518-23, Jan 26 2010.
[29] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, "Basic local alignment search tool," J Mol Biol, vol. 215, pp. 403-10, Oct 5 1990.