| 研究生: |
吳墨岳 Manuel Carrera Uribe |
|---|---|
| 論文名稱: |
以田口法及變異數分析優化空氣對流冷卻下之熱電發電器 Taguchi and Analysis of Variance (ANOVA) Optimization of Thermoelectric Generators with Air Convection Cooling |
| 指導教授: |
陳維新
Chen, Wei-Hsin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 能源工程國際碩博士學位學程 International Master/Doctoral Degree Program on Energy Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 英文 |
| 論文頁數: | 121 |
| 中文關鍵詞: | 熱電發電機 、統計優化 、實驗設計 、田口方法 、方差分析 、響應面法 (RSM) 、餘熱回收 、空氣對流冷卻 、輸出功率 、交互分析 |
| 外文關鍵詞: | Thermoelectric generator, Statistical optimization, Design of Experiment, Taguchi method, ANOVA, Response Surface Methodology (RSM), Waste Heat Recovery, Air convection cooling, Output power, Interaction analysis |
| ORCID: | 0000-0002-6711-231X |
| 相關次數: | 點閱:111 下載:18 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
熱電發電機 (TEG) 可以直接將熱能轉化為電能。 然而,它的效率很低,因此有必要優化 TE 系統以最大化輸出功率。 許多回顧文章都關注這項技術。 然而,還沒有透過統計方法對 TEG 優化進行的全面回顧。 本研究通過田口方法、方差分析 (ANOVA) 和響應面方法 (RSM) 回顧了熱電發電機優化,以確定該技術的主要優化結果和趨勢。 確定了三個優化路徑:操作條件、幾何配置和熱電發電機 (TEG) 的 TE 材料。 儘管 TEG 系統不應該具有“一體適用”的特徵組合,但有些基於先前研究結果的趨勢已經確定。 對於每條優化路徑,對 TEG 系統影響最顯著的關鍵參數是工作條件下的熱源溫度和幾何配置下的 TE 晶粒高度。 但是,對於 TE 材料,沒有明確公認的參數。 因此,這些結果表明,優化 TEG 系統的熱源條件將產生最佳結果,優化 TE 模塊中的 TE 晶粒高度將進一步改進系統。 大約 70% 的優化熱電發電機的研究使用了田口方法; 因此,田口方法仍然是最流行的 TEG 分析統計工具。 此外,還強調了使用統計方法優化熱電發電機的前景和挑戰。
此外,本研究還介紹了市售 TEG 的優化,這些 TEG 透過模擬自然風速的強制對流進行冷卻,並在低質量廢熱溫度下運行,以進一步提高 TEG 性能。 兩種市售的 TEG 通過田口方法進行了優化。 田口方法採用三個參數和三個水平來實現,形成一個 L9 正交陣列,其中目標函數是最大輸出功率,並且是從阻抗匹配方法中找到的。 優化的參數是熱側溫度、散熱器尺寸和風速。 方差分析 (ANOVA) 與田口正交陣列一起用於結果的統計分析。 優化結果表明,熱端溫度是對輸出功率影響最大的參數。 此外,散熱器尺寸的變化對輸出功率的提高有顯著影響,而風速的影響則沒有那麼顯著。 此外,還進行了參數之間的相互作用分析。 田口方法產生了令人滿意的優化結果。 優化後的系統在 140°C 熱側溫度、型號 K402 散熱器和 3.7 m/s 風速下產生 0.65 W 的功率。 結果表明,與熱側溫度和散熱器尺寸相比,空氣速度對輸出功率的影響最小。 結果還表明,高度具有較低 TE 晶粒高度的 TEG 產生最佳功率輸出,而具有較高 TE 晶粒高度的 TEG 在較高負載電阻下產生更好的性能。
The thermoelectric generator (TEG) can directly convert heat to electricity. However, its efficiency is low, so optimizing TE systems to maximize output power is necessary. Many review papers have focused on this technology. However, there has not been a comprehensive review of TEG optimization by a statistical approach. This study reviews thermoelectric generator optimization by the Taguchi method, analysis of variance (ANOVA), and the response surface methodology (RSM) to identify the major optimization findings and tendencies for this technology. Three optimization paths are identified: operating conditions, geometrical configuration, and TE materials for thermoelectric generators (TEGs). Although there is no “one-size-fits-all” combination of characteristics that a TEG system should have, some tendencies based on the results of previous studies have been identified. The key parameters that show the most significant effect on the TEG system for each optimization path are the heat source temperature for the operating conditions and the TE leg height for the geometrical configuration. However, there are no distinctly recognized parameters for TE materials. Thus, these results show that optimizing the heat source conditions of a TEG system will yield the best possible results, and optimizing the TE leg height in the TE module would further improve the system. About 70% of the studies optimizing thermoelectric generators utilized the Taguchi method; thus, the Taguchi method remains the most popular statistical tool for TEG analysis. In addition, the perspectives and challenges of optimizing thermoelectric generators using statistical approaches are underlined.
Furthermore, this study presents the optimization of commercially available TEGs that are cooled by forced convection simulating naturally occurring wind speeds, and that operate under low quality waste heat temperatures. Two commercially available TEGs are optimized via the Taguchi method. The Taguchi method was implemented with three parameters and three levels making an L9 orthogonal array, where the objective function is the maximum output power which value is found by approaching the impedance matching curve. The optimized parameters were the hot side temperature, the heat sink size, and the wind airspeed. Analysis of Variance (ANOVA) is used alongside the Taguchi orthogonal array for the statistical analysis of the results. The optimization results show that the hot side temperature is the most influential parameter to the output power. In addition, the change in the heat sink size shows to have a significant influence on the improvement of the output power, whereas the impact of the wind speed was not as significant. In addition, interaction analysis between the parameters is performed. The Taguchi method yielded satisfactory optimization results. The optimized system yielded 0.65 W of power at 140°C hot side temperature, Model K402 heat sink, and 3.7 m/s wind speed. The results showed that the influence of the air velocity is minimal to the output power in comparison to the hot side temperature and the size of the heat sink. The results also show that the TEG with a smaller TE leg height yielded the best power output, whereas the TEG with the taller TE leg yielded better performance at higher load resistance.
[1] Development WCoEa. Our common future. Oxford Unviersity Press; 1987.
[2] Miola A, Schiltz F. Measuring sustainable development goals performance: How to monitor policy action in the 2030 Agenda implementation? Ecological Economics. 2019;164.
[3] Nations U. UN Sustainable Development Goals. 2015.
[4] Agency IE. Total energy supply (TES) by source, World 1990-2018. 2021.
[5] Farzaneh-Gord M, Behi MR, Yahyaie A, Mirmohammadi SAA. Estimating recoverable work of an engine by utilizing the CO2 Brayton power cycle and capturing heat lost. Archives of Thermodynamics. 2009;30.
[6] Forman C, Muritala IK, Pardemann R, Meyer B. Estimating the global waste heat potential. Renewable and Sustainable Energy Reviews. 2016;57:1568-79.
[7] Brückner S, Liu S, Miró L, Radspieler M, Cabeza LF, Lävemann E. Industrial waste heat recovery technologies: An economic analysis of heat transformation technologies. Applied Energy. 2015;151:157-67.
[8] Naik-Dhungel N. Waste heat to power systems. In: Agency USEP, editor.: Combined Heat and Power Partnership; 2012.
[9] Jouhara H, Khordehgah N, Almahmoud S, Delpech B, Chauhan A, Tassou SA. Waste heat recovery technologies and applications. Thermal Science and Engineering Progress. 2018;6:268-89.
[10] Xu G, Huang S, Yang Y, Wu Y, Zhang K, Xu C. Techno-economic analysis and optimization of the heat recovery of utility boiler flue gas. Applied Energy. 2013;112:907-17.
[11] Costiuc I, Costiuc L, Radu S. Waste heat recovery using direct thermodynamic cycle. Bulletin of the Transilvania University of Braşov. 2015;8.
[12] Khalid KAA, Leong TJ, Mohamed K. Review on Thermionic Energy Converters. IEEE Transactions on electron devices. 2016;63.
[13] Chen W-H, Wang C-C, Hung C-I, Yang C-C, Junag R-C. Modeling and simulation for the design of thermal-concentrated solar thermoelectric generator. Energy. 2014;64.
[14] Chen W-H, Lin Y-X, Chiou Y-B, Lin Y-L, Wang X-D. A computational fluid dynamics (CFD) approach of thermoelectric generator (TEG) for power generation. Applied Thermal Engineering. 2020;173.
[15] Zhang C, Ho S-H, Chen W-H, Xie Y, Liu Z, Chang J-S. Torrefaction performance and energy usage of biomass wastes and their correlations with torrefaction severity index. Applied Energy. 2018;220:598--604.
[16] He W, Zhang G, Zhang X, Ji J, Li G, Zhao X. Recent development and application of thermoelectric generator and cooler. Applied Energy. 2015;143:1-25.
[17] Chen W-H, Wang C-M, Saw LH, Hoang AT, Bandala AA. Performance evaluation and improvement of thermoelectric generators (TEG): Fin installation and compromise optimization. Energy Conversion and Management. 2021;15.
[18] Chen W-H, Chiou Y-B, Chein R-Y, Uan J-Y, Wang X-D. Power generation on thermoelectric generator with plate fins for recovering low-temperature waste heat. Applied Energy. 2022;15.
[19] Orr B, Akbarzadeh A, Mochizuki M, Singh R. A review of car waste heat recovery systems utilising thermoelectric generators and heat pipes. Applied Thermal Engineering. 2016;101.
[20] Atouei SA, Rezania A, Ranijbar AA, Rosendahl LA. Protection and thermal management of thermoelectric generator system using phase change materials: An experimental investigation. Energy. 2018;156.
[21] Champier D. Thermoelectric generators: A review of applications. Energy Conversion and Management. 2017;140.
[22] Chen W-H, Wu P-H, Lin Y-L. Performance optimization of thermoelectric generators designed by multi-objective genetic algorithm. Applied Energy. 2018;209.
[23] Chen W-H, Lin Y-X, Wang X-D, Lin Y-L. A comprehensive analysis of the performance of thermoelectric generators with constant and variable properties. Applied Energy. 2019;241.
[24] Chen W-H, Zhuang Y-Q, Liu S-H, Juang T-T, Tsai C-M. Product characteristics from the torrefaction of oil palm fiber pellets in inert and oxidative atmospheres. Bioresource Technology. 2016;199:367-74.
[25] Zorbas KT, Hatzikraniotis E, Paraskevopoulos KM. Power and efficiency calculation in commercial TEG and application in wasted heat recovery in automobile. Proceedings of 5th European Conference on Thermoelectrics2007.
[26] Gaurav K, Pandey SK. Efficiency calculation of a thermoelectric generator for investigating the applicability of various thermoelectric materials. Journal of Renewable and Sustainable Energy. 2017;9.
[27] Hazama H, Masuoka Y, Suzumura A, Matsubara M, Tajima S, Asahi R. Cylindrical thermoelectric generator with water heating system for high solar energy conversion efficiency. Applied Energy. 2018;226.
[28] Wang C-C, Hung C-I, Chen W-H. Design of heat sink for improving the performance of thermoelectric generator using two-stage optimization. Energy. 2012;39.
[29] Agency IE. World Energy Balances: Overview. 2021.
[30] Weisser D. A guide to life-cycle greenhouse gas (GHG) emissions from electric supply technologies. Energy. 2007;32.
[31] Kweku DW, Bismark O, Maxwell A, Desmond KA, Danso KB, Oti-Mensah EA, et al. Greenhouse Effect: Greenhouse Gases and Their Impact on Global Warming. Journal of Scientific Research & Reports. 2017;2017.
[32] Kampa M, Castanas E. Human health effects of air pollution. Environmental Pollution. 2008.
[33] Forman C, Muritala IK, Pandermann R, Meyer B. Estimating the global waste heat potential. Renewable and Sustinable Energy Reviews. 2016;57.
[34] Firth A, Zhang B, Yang A. Quantification of global waste heat and its environmental effects. Applied energy. 2019;235:1314-34.
[35] Schwurack R, Barschneider J, Unz S, Beckmann M. Performance enhancement of a thermoelectric system with improved natural convection cooling by utilizing the chimney effect. Energy Conversion and Management. 2021;237.
[36] Candadai AA, Kumar VP, Barshilia HC. Performance evaluation of a natural convective-cooled concentration solar thermoelectric generator coupled with a spectrally selective high temperature absorber coating. Solar Energy Materials and Solar Cells. 2016;145:333-41.
[37] Zheng LJ, Kang HW. A passive evaporative cooling heat sink method for enhancing low-grade waste heat recovery capacity of thermoelectric generators. Energy Conversion and Management. 2022;251.
[38] Ji Y, Lv S. Comprehensive research on a simple and efficient radiative cooling driving thermoelectric generator system for nighttime passive power generation. Applied Thermal Engineering. 2023;219:119560.
[39] Nuwayhid RY, Shihadeh A, Ghaddar N. Development and testing of a domestic woodstove thermoelectric generator with natural convection cooling. Energy Conversion and Management. 2005;46:1631-43.
[40] Moraes FS, Santos LC, Alencar RN, Sempels EV, Sandoval JC, Lesage FJ. Solar thermoelectric generator performance relative to air speed. Energy Conversion and Management. 2015;99:326-33.
[41] Sundarraj P, Taylor RA, Banerjee D, Maity D, Roy SS. Experimental and theoretical analysis of a hybrid solar thermoelectric generator with forced convection cooling. J Phys D Appl Phys. 2017;50.
[42] Zhang HZ, Li KW, Zhu YH, Jia L. Numerical study on the performance of the thermoelectric generator with different air-water mixtures. Geothermics. 2023;107.
[43] Lekbir A, Hassani S, Mekhilef S, Saidur R, Ab Ghani MR, Gan CK. Energy performance investigation of nanofluid-based concentrated photovoltaic / thermal-thermoelectric generator hybrid system. Int J Energ Res. 2021;45:9039-57.
[44] Patil DS, Arakerimath RR, Walke PV. Experimental investigation and optimization of a low-temperature thermoelectric module with different operating conditions. World Journal of Engineering. 2019;16.
[45] Terzioglu H. Analysis of effect factors on thermoelectric generator using Taguchi method. Measurament. 2020;149.
[46] Chen W-H, Huang S-R, Lin Y-L. Performance analysis and optimum operation of a thermoelectric generator by Taguchi method. Applied Energy. 2015;158.
[47] Huang S, Xu X. Parametric Optimization of Thermoelectric Generators for Waste Heat Recovery. Journal of Electronic Materials. 2016;45.
[48] Amatya R, Ram RJ. Solar Thermoelectric Generator for Micropower Applications. Journal of Electronic Materials. 2010;39:1735-40.
[49] Twaha S, Zhu J, Yan Y, Li B. A comprehensive review of thermoelectric technology: Materials, applications, modelling and performance improvement. Renewable and Sustainable Energy Reviews. 2016;65.
[50] Silveira EA, Lin B-J, Colin B, Chaouch M, Pétrissans A, Rousset P, et al. Heat treatment kinetics using three-stage approach for sustainable wood material production. Industrial Crops and Products. 2018;124:563--71.
[51] Sahin AZ, Ismaila KG, Yilbas BS, Al-Sharafi A. A review on the performance of photovoltaic/thermoelectric hybrid generators. International Journal of Energy Research. 2019;44.
[52] Elghool A, Basrawi F, Ibrahim TK, Habib K, Ibrahim H, Idris DMND. A review on heat sink for thermo-electric power generation: Classifications and parameters affecting performance. Energy Conversion and Management. 2017;134.
[53] Siddique ARM, Mahmud S, Heyst BV. A review of the state of the science on wearable thermoelectric power generators (TEGs) and their existing challenges. Renewable and Sustainable Energy Reviews. 2017;73.
[54] Fitriani, Ovik R, Long BD, Barma MC, Riaz M, Sabri MFM, et al. A review on nanostructures of high-temperature thermoelectric materials for waste heat recovery Renewable and Sustainable Energy Reviews. 2016;64.
[55] Hasan MN, Wahid H, Nayan N, Ali MSM. Inorganic thermoelectric materials: A review. International Journal of Energy Research. 2020;44.
[56] Junior OHA, Maran ALO, Henao NC. A review of the development and applications of thermoelectric microgenerators for energy harvesting. Renewable and Sustainable Energy Reviews. 2018;91.
[57] Patil DS, Arakerimath RR, Walke PV. Thermoelectric materials and heat exchangers for power generation - A review. Renewable and Sustainable Energy Reviews. 2018;95.
[58] Alghoul MA, Shahahmadi SA, Yeganeh B, Asim N, Elbreki AM, Sopian K, et al. A review of thermoelectric power generation systems: Roles of existing test rigs / prototypes and their associated cooling units on ouput performance. Energy Conversion and Management. 2018;174.
[59] Karanfil G. Importance and applications of DOE/optimizatoin methods in PEM fuel cells: A review. International Journal of Energy Research. 2019;44.
[60] Wagner JR, Mount EM, Giles HF. Extrusion: The definitive processing guide and handbook: William Andrew Publishing; 2013.
[61] Sivaraos, Milkey KR, Samsudin AR, Dubey AK, Kidd P. Comparison between Taguchi Method and Response Surface Methodology (RSM) in modelling CO2 Laser Machining. Jordan Journal of Mechanical and Industrial Engineering. 2014;8.
[62] Chen W-H, Chang C-M, Mutuku JK, Lam SS, Lee W-J. Analysis of microparticle deposition in the human lung by taguchi method and response surface methodology. Environmental Research. 2021;197.
[63] Yuangyai C, Nembhard HB. Emerging Nanotechnologies for Manufacturing: William Andrew; 2015.
[64] Karna SK, Sahai R. An Overview on Taguchi Method. International Journal of Engineering and Mathermatical Sciences. 2012;1:11-8.
[65] Karna SK, Sahai R. An Overview on Taguchi Method. International Journal of Engineering and Mathermatical Sciences. 2012;1.
[66] Chen W-H, Chen C-J, Hung C-I. Taguchi approach for co-gasification optimization of torrefied biomass and coal. Bioresource Technology. 2013;144:615-22.
[67] Mohan S, Sivapirakasam S, Kumar MS, Surianarayanan M. Application of Taguchi method in the optimization of process parameters for a sol-gel-delivered nano-alumina film. journal of MATERIALS: DESIGN AND APPLICATIONS. 2015;230.
[68] Yudhanto F, Jamasri, Rochardjo HSB. Application of taguchi method for selection parameter bleaching treatments against mechanical and physical properties of agave canrala fiber. IOP Conference Series: Materials Science and Engineering. 2017;352.
[69] Kopač J, Bahor M, Soković M. Optimal machining parameters for achieving the desired surface roughness in fine turning of cold pre-formed steel workpieces. International Journal of Machine Tools and Manufacture. 2002;42:707-16.
[70] Kishore RA, Sanghadasa M, Priya S. Optimization of segmented thermoelectric generator using Taguchi and ANOVA techniques. Scientific Reports. 2017;7.
[71] Camposeco-Negrete C. Optimization of cutting parameters for minimizing energy consumption in turning of AISI 6061 T6 using Taguchi methodology and ANOVA. Journal of Cleaner Production. 2013;53.
[72] Muthukrishnan N, Davim JP. Optimization of machining parameters of Al/SiC-MMC with ANOVA and ANN analysis. Journal of Materials Processing Technology. 2009;209.
[73] Rajesh A, Venkatesh J. Taguchi method and Pareto ANOVA: An approach for process parameters optimization in micro-EDM drilling. International Journal of Scientific & Engineering Research. 2014;5.
[74] Chachuli SAM, Fasyar PNA, Soin N, Karim NM, Yusop N. Pareto ANOVA analysis for CMOS 0.18 μm two-stage Op-amp. Materials Science in Semiconductor Processing. 2014;24.
[75] Andradóttir S, Lee JS. Pareto set estimation with guaranteed probability of correct selection. European Journal of Operational Research. 2021;292.
[76] Sobol IM. Sensitivity Estimates for Nonlinear Mathematical Models. Mathematical Modelling and Computational Experiments. 1993;4:407-14.
[77] Saltelli A, Tarantola S. A Quantitative Model-Independent Method for Global Sensitivity Analysis of Model Output. Technometrics. 2012;41.
[78] Owen AB. Sobol' Indices and Shapley Value. SIAM/ASA Journal on Uncertainty Quantification. 2014;2.
[79] Tabatabaei M, Lovison A, Tan M, Hartikainen M, Miettinen K. ANOVA-MOP: ANOVA decomposition for multiobjective optimization. Society for Industrial and Applied Mathematics. 2018;28.
[80] Şenaras AE. Sustainable Engineering Products and Manufacturing Technologies: Academic Press; 2019.
[81] Baş D, Boyanci IH. Modeling and optimization I: Usability of response surface methodology. Journal of Food Engineering. 2007;78.
[82] Koocheki A, Khajeh-Hosseini M. Saffron: Woodhead Publishing; 2020.
[83] Huang S, Xu X. Parametric Optimization of Thermoelectric Generators for Waste Heat Recovery. Journal of Electronic Materials. 2016;10.
[84] Yolmeh M, Jafari SM. Applications of Response Surface Methodology in the Food Industry Processes. Food and Bioprocess Technology. 2016.
[85] Meng F, Chen L, Sun F. Effects of thermocouples' physical size on the performance of the TEG-TEH system. International Journal of Low-Carbon Technologies. 2016;11.
[86] Erturun U, Erermis K, Mossi K. Effect of various leg geometries on thermo-mechanical and power generation performance of thermoelectric devices. Applied Thermal Engineering. 2014;73.
[87] Chen W-H, Liao C-Y, Hung C-I, Huang W-L. Experimental study on thermoelectric modules for power generation at various operating conditions. Energy. 2012;45:874-81.
[88] Li P, Ai X, Zhang Q, Gu S, Wang L, Jiang W. Enhanced thermoelectric performance of hydrothermally synthesized polycrystalline Te-doped SnSe. Chinese Chemical Letters. 2021;32.
[89] Aswal DK, Basu R, Singh A. Key issues in development of thermoelectric power generators: High figure-of-merit materials and their highly conducting interfaces with metallic interconnects. Energy Conversion and Management. 2016;114.
[90] Lu X, Zheng Q, Gu S, Guo R, Su L, Wang J, et al. Enhanced TE properties of Cu@Ag/Bi2Te3 nanocomposites by decoupling electrical and thermal properties. Chinese Chemical Letters. 2020;31.
[91] Rabari R, Mahmud S, Dutta A. Numerical simulation of nanostructured thermoelectric generator considering surface to surrounding convection. International Communications in Heat and Mass Transfer. 2014;56.
[92] Seo J-H, Garud KS, Lee M-Y. Grey relational based Taguchi analysis on thermal and electrical performances of thermoelectric system with inclined fins hot heat exchanger. Applied Thermal Energy. 2021;184.
[93] Zhang R, Zhang H, Wang X. Lateral comparison of the coupling parameters on the novel hexagonal shaped cross flow thermoelectric generator. Energy. 2021;215.
[94] Liu K, Tang X, Liu Y, Xu Z, Yuan Z, Ji D, et al. Experimental optimization of small-scale structure-adjustable radioisotope thermoelectric generators. Applied Energy. 2020;280.
[95] Rezania A, Atouei SA, Rosendahal L. Critical parameters in integration of thermoelectric generators and phase change materials by numberical and Taguchi methods. Materials Today Energy. 2020;16.
[96] Li N, Yu X, Xu J, Wang Q, Ma T. Numerical study on thermoelectric-hydraulic performance of thermoelectric recuperator with wavy thermoelectric fins. High Temperatures-High Pressures. 2020;49:423-44.
[97] Ma T, Qu Z, Yu X, Lu X, Chen Y, Wang Q. Numerical study and optimization of thermoelectric-hydraulic performance of a novel thermoelectric generator integrated recuperator. Energy. 2019;174.
[98] Kishore RA, Kumar P, Priya S. A comprehensive optimization study on Bi2Te3-based thermoelectric generators using the Taguchi method. Sustainable Energy & Fuels. 2018;175.
[99] Gonçalves AP, Lopes EB, Villeroy B, Monnier J, Godart C, Lenoir B. Effect of Ni, Bi and Se on the tetrahedrite formation. RSC Advances. 2016;6.
[100] Kim H, Lee Y, Lee KH. Design of a Thermoelectric Layer for a Micro Power Generator. International Journal of Precision Engineering and Manufacturing. 2012;13:261-7.
[101] Kim H, Lee Y, Lee KH. Optimization of P-type poly-Si thermoelectric films design. Journal of Mechanical Science and Technology. 2008;22:221-7.
[102] Ji D, Hu S, Feng Y, Qin J, Yin Z, Romagnoli A, et al. Geometry optimization of solar thermoelectric generator under different operating conditions via Taguchi method. Energy Conversion and Management. 2021;238.
[103] Lee U, Park S, Lee I. Rosbust design optimization (RDO) of thermoelectric generator system using non-dominated sorting genetic algorithm II (NSGA-II). Energy. 2020;196.
[104] Radaideh MI, Radaideh MI, Kozlowski T. Design optimization under uncertainty of hybrid fuel cell energy systems for power generation and cooling purposes. International Journal of Hydrogen Energy. 2020;45.
[105] Karri NK, Mo C. Geometry optimization for structural reliability and performance of a thermoelectric generator. SN Applied Sciences. 2019.
[106] Sakdanuphab R, Sakulkalavek A. Design, empirical modelling and analysis of a waste-heat recovery system coupled to a traditional cooking stove. Energy Conversion and Management. 2017;139.
[107] Su CQ, Huang C, Deng YD, Wang YP, Chu PQ, Zheng SJ. Simulation and Optimization of the Heat Exchanger for Automotive Exhaust-Based Thermoelectric Generators. Journal of Electronic Materials. 2016;45.
[108] Ranjan M, Maiti T. Device modeling and performance optimization of thermoelectric generators under isothermal and isofluz heat source condition. Journal of Power Sources. 2020;480.
[109] Patil DS, Arakerimath RR, Walke PV. Experimental investigation and optimization of a low-temperature thermoelectric module with different operating conditions. World Journal of Engineering. 2019.
[110] Ji D, Wei Z, Mazzoni S, Mengarelli M, Rajoo S, Zhao J, et al. Thermoelectric generation for waste heat recovery: Application of a system level design optimization approach via Taguchi method. Energy Conversion and Management. 2018;172.
[111] Kyratsi T, Ioannou M. Thermoelectric Properties of Hot-Pressed β-K2Bi8Se13-xSx Materials. Journal of ELECTRONIC MATERIALS. 2013;42.
[112] Pandel D, Singh AK, Banerjee MK, Gupta R. Optimization of Mg2(Si-Sn) based thermoelectric generators using the Taguchi method. Materials Today: Proceedings. 2021;44.
[113] Rejeb O, Shittu S, Ghenai C, Li G, Zhao X, Bettayeb M. Optimization and performance analysis of a solar concentrated photovoltaic-thermoelectric (CPV-TE) hybrid system. Renewable Energy. 2020;152.
[114] Ahmad S, Singh A, Basu R, Vitta S, Muthe KP, Gadkari SC, et al. Optimization of Thermoelectric Properties of Mechanically Alloyed p-type SiGe by Mathematical Modelling. Journal of ELECTRONIC MATERIALS. 2019;48.
[115] Ji DX, Wei ZB, Mazzoni S, Mengarelli M, Rajoo S, Zhao JY, et al. Thermoelectric generation for waste heat recovery: Application of a system level design optimization approach via Taguchi method. Energy Conversion and Management. 2018;172:507-16.
[116] Terzioglu H. Analysis of effect factors on thermoelectric generator using Taguchi method. Measurement. 2020;149.
[117] Elghool A, Basrawi F, Ibrahim TK, Ibrahim H, Ishak M, Yusof MHb, et al. Multi-objective optimization to enhance the performance of thermo-electric generator combined with heat pipe-heat sink under forced convection. Energu. 2020;208.
[118] Chen WH, Wang CM, Lee DS, Kwon EE, Ashokkumar V, Culaba AB. Optimization design by evolutionary computation for minimizing thermal stress of a thermoelectric generator with varied numbers of square pin fins. Applied Energy. 2022;314.
[119] Attar A, Lee H, Snyder J. Optimum load resistnace for a thermoelectric generator system. Energy Conversion and Management. 2020;226.
[120] Ge M, Li Z, Zhao Y, Xuan Z, Li Y, Zhao Y. Experimental study of thermoelectric generator with different number of modules for waste heat recovery. Applied Energy. 2022;322.
[121] Jouhara H, Khordehgah N, Almahmoud S, Delpech B, Chauhan A, Tassou SA. Waste heat recovery technologies and applications. Thermal Science and Engineering Progress. 2018;6.
[122] Mayer PM, Ram RJ. Optimization of heat sink-limited thermoelectric generators. Nanosc Microsc Therm. 2006;10:143-55.
[123] Dulbari, Santosa E, Sulistyono E, Koesmaryono Y. Adaptation of Wetland Rice to Extreme Weather. Journal of Tropical Crop Science. 2017;4.
[124] Chen W-H, Chen K-H, Chein R-Y, Ong HC, Arunachalam KD. Optimization of hydrogen enrichment via palladium membrane in vacuum environments using Taguchi method and normalized regression analysis. International Journal of Hydrogen Energy. 2022.
[125] Chen W-H, Shih-Rong, Lin Y-L. Performance analysis and optimum operation of a thermoelectric generator by Taguchi method. Applied Energy. 2015;158.
[126] Wang ZY, Wang YC, Zhuang M. Improvement of the aerodynamic performance of vertical axis wind turbines with leading-edge serrations and helical blades using CFD and Taguchi method. Energy Conversion and Management. 2018;177:107-21.
[127] Phadke MS. Quality engineering using robust design: Prentice Hall PTR; 1995.
[128] Chen WH, Wang JS, Chang MH, Mutuku JK, Hoang AT. Efficiency improvement of a vertical-axis wind turbine using a deflector optimized by Taguchi approach with modified additive method. Energy Conversion and Management. 2021;245.
[129] Ragupathi P, Barik D, Aravind S, Vignesh G. Performance Optimization of Thermoelectric Generators using Taguchi Method. IOP Conference Series: Materials Science and Engineering: IOP Publishing; 2021. p. 012053.
[130] Chen W-H, Huang S-R, Lin Y-L. Performance analysis and optimum operation of a thermoelectric generator by Taguchi method. Applied Energy. 2015;158:44-54.
[131] Kishore RA, Sanghadasa M, Priya S. Optimization of segmented thermoelectric generator using Taguchi and ANOVA techniques. Scientific reports. 2017;7:1-15.
[132] Patil DS, Arakerimath RR, Walke PV. Experimental investigation and optimization of a low-temperature thermoelectric module with different operating conditions. World Journal of Engineering. 2019;16:368-76.
[133] Ranjan M, Maiti T. Device modeling and performance optimization of thermoelectric generators under isothermal and isoflux heat source condition. Journal of Power Sources. 2020;480:228867.
[134] Rezania A, Atouei SA, Rosendahl L. Critical parameters in integration of thermoelectric generators and phase change materials by numerical and Taguchi methods. Mater Today Energy. 2020;16.
[135] Kishore RA, Kumar P, Priya S. A comprehensive optimization study on Bi 2 Te 3-based thermoelectric generators using the Taguchi method. Sustainable Energy & Fuels. 2018;2:175-90.
[136] Ji D, Hu S, Feng Y, Qin J, Yin Z, Romagnoli A, et al. Geometry optimization of solar thermoelectric generator under different operating conditions via Taguchi method. Energy Conversion and Management. 2021;238:114158.
[137] Bijukumar B, Ilango GS, Nagamani C. Design and implementation of a current controlled grid connected inverter for thermoelectric generator sources. Sadhana-Acad P Eng S. 2020;45.