簡易檢索 / 詳目顯示

研究生: 王天昱
Wang, Tien-Yu
論文名稱: 脈衝雷射多軸雕刻系統開發與孔形貌修正之應用
The development of the multi-axis pulsed laser engraving system with modified hole-contour applications
指導教授: 林震銘
Lin, Jehn-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 130
中文關鍵詞: 多軸加工系統修正加工形貌分析
外文關鍵詞: Multi-axis machining system, Oblique drilling, Contour analysis
相關次數: 點閱:81下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究開發五軸加工系統搭配後處理加工程式,應用於石墨靶材之三維雕刻,進行排孔之形貌修正加工。修正加工即在錐孔之孔壁上進行斜向鑽孔,並藉由數值程式模擬錐孔孔壁之修正結果觀察其趨勢。
    數值計算部分是利用一維熱傳計算雷射照射在石墨靶材上之內部溫度分布,再推算出不同能量對應之移除深度,接著引入不同角度計算靶材上單點光斑及能量吸收的變化。針對多發不同加工順序,改變其能量、重疊率之條件結果,觀察其孔壁形貌修正之結果,並針對其靶材上之能量分布進行討論。實驗加工部分,使用Nd-YAG雷射,藉由數控方式達到五軸自動化對位加工,並針對定位誤差進行座標系統之補償。最後將實驗加工的結果利用粗度儀進行孔形量測,並與模擬結果相互驗證,分析加工之形貌趨勢。
    結果顯示,孔形修正角度在45°時有較佳之修正結果,多孔修正加工其加工順序不同時,其孔之形貌也隨之改變;加工之能量越強其孔深越深,其實驗與模擬之結果趨勢相符。

    In this study, a five-axis processing system incorporated with postprocessor was carried out for morphology modification processing on drilling holes. Modification processing was made by means of oblique drilling in the walls and compared it with the results from the drilled wall simulated by numerical approach.

    The numerical part is to use one-dimensional heat transfer to calculate distribution of internal temperature that laser irradiates on the target, further projected the removal depth corresponding to different energies, and then substituting different angles to calculate the change of energy absorption. For change of energy and overlapping ratio depending on versified processing sequence, the morphology results in the modifications of drilling hole on the graphite target can be observed. On the aspect of experimental processing, we used Nd:YAG laser and digital control unit to achieve five-axis alignment processing and compensated for the positioning errors. Finally the roughness measurement was carried out to verify the shape of hole with the results of the experimental and numerical works and to analyze the morphology trend of processing.

    When the shape of hole is corrected at 45°, it generated better results in the modification. There is a versified processing sequence in the drilling hole modification; the stronger the energy processed, the deeper the hole and the shape matches the trend between the experimental and numerical results.

    摘要 I Extended Abstract II 誌謝 VIII 目錄 IX 表目錄 XIV 圖目錄 XVII 符號說明 XXII 第一章 緒論 1 1-1研究背景目的 1 1-2文獻回顧 3 1-2.1雷射雕刻、鑽孔實驗 3 1-2.2雷射鑽孔模擬 6 1-3本文架構 10 第二章 製程原理 11 2-1雷射光特性 11 2-1.1雷射光模態 12 2-1.2雷射光束品質與影響 12 2-1.3高斯光束之聚焦 14 2-1.4雷射於斜板上的光束特徵 16 2-2雷射對於石墨材料之移除機制 17 2-2.1吸收性與反射性 17 2-2.2雷射光的偏極性 18 2-2.3一維暫態熱傳方程式 20 2-2.4蒸氣分子密度 21 2-2.5石墨表面成型輪廓 22 2-3多軸系統座標系建立 23 2-3.1座標系統的定義 23 2-3.2齊次座標轉換矩陣 24 2-4誤差模型的建立 28 2-4.1線性運動誤差 28 2-4.2軸向旋轉誤差 29 第三章 數值分析 31 3-1計算參數說明 31 3-1.1石墨之材料性質 31 3-1.2計算參數 32 3-1.3計算模型與假設 33 3-1.4MATLAB程式介紹 34 3-2數值模擬之計算過程 35 3-2.1單點加工計算過程 35 3-2.2多孔修正加工計算流程 38 3-3計算結果與討論 42 3-3.1單脈衝斜孔模擬結果 42 3-3.2重疊孔之加工順序對於孔形貌之影響 45 3-3.2.1兩孔重疊形貌模擬 45 3-3.2.2多孔重疊形貌模擬 48 3-3.3改變垂直孔重疊率及能量模擬結果 50 3-3.3.1淺層加工模擬結果 50 3-3.3.2中層加工模擬結果 53 3-3.3.3深層加工模擬結果 56 3-4結果與討論 59 第四章 實驗 61 4-1多軸加工系統 61 4-1.1實驗設備與配置 61 4-1.2幾何誤差校正 66 4-1.3誤差量測分析 69 4-1.3.1偏轉誤差 69 4-1.3.2定位誤差 73 4-1.3.3重複精度 73 4-1.4實驗操作流程 74 4-2孔形量測方法 75 4-3單孔斜向加工孔形量測結果 76 4-4兩孔不同加工模式 80 4-4.1兩孔重疊加工量測結果 80 4-4.2兩孔重疊加工模擬與量測比較 83 4-5重疊率對於多孔不同加工模式之影響 86 4-5.1重疊率50%量測結果 86 4-5.2重疊率50%模擬與量測比較 88 4-5.3重疊率30%量測結果 91 4-5.4重疊率30%模擬與量測比較 93 4-6剖面法與粗度儀量測結果比較 96 4-7實驗量測結果與模擬間之差距討論 99 4-8結果與討論 102 第五章 綜合討論與建議 104 5-1綜合討論 104 5-2相關建議與未來發展 108 參考文獻 109 附錄A 五軸加工機之後處理程式 111 附錄B 利用誤差模型計算修正補償量 115 附錄C 雷射功率對應表 130

    [1] Ruf. A., Berger. P., “Analytical investigation on geometrical influences on laser drilling”, Journal of Physics D: Applied Physics, 34(18), 2918, 2001.
    [2] Steen W. M., Mazumder J., “Laser material processing”,4th Edition, Springer, London, p11-135, 2010.
    [3] Sobol Emil N.,“Phase Transformations And Ablation In Laser-Treated Solids”, John Wiley and Sons, NY, p111-118, 1995.
    [4] Yang H., Shi J., “Study of laser precise drilling technology of ceramic material”, Proceedings of SPIE – The International Society for Optical Engineering, v5629, p404-412, 2005.
    [5] Hu W., Shin Y. C., King G. B., “Micromachining of Metals, Alloys, and Ceramics by Picosecond Laser Ablation”, Journal of Manufacturing Science and Engineering, v132(1), 011009, P1-7, 2010.
    [6] Samant A. N., Dahotre N. B., “Three-dimensional laser machining of structural ceramics”, Journal of Manufacturing Processes, v 12, P1-7, 2010.
    [7] Wang K. D., Duan W. Q., Mei X. S., Wang W. J., “Study on Recast Phenomenon in Processing of Micro-Hole with Millisecond Laser”, Advanced Materials Research, v459, p315-319, 2012.
    [8] Yang X. J., Li M., Wang L., Zhao H. L., Cheng G. H., “A New Method of Processing High-precision Micro-hole with The Femtosecond Laser”, Applied Mechanics and Materials, v268-270, p382-386, 2013.
    [9] Yoshioka S., Miyazaki T., “Numerical prediction of hole shape in energy beam drilling of metals”, Precision Engineering, v6, p181-186, 1984.
    [10] Salonitis K., Stournaras A., Tsoukantas G., Stavropoulos P., Chryssolouris G., “A theoretical and experimental investigation on limitations of pulsed laser drilling”, Journal of Materials Processing Technology, v183, p96-103, 2007.
    [11] Begic-Hajdarevic D., Bijelonja I., “Experimental and Numerical Investigation of Temperature Distribution and Hole Geometry during Laser Drilling Process”, Procedia Engineering, v100, p384-393, 2015.
    [12] Zhu Bo, Tan S. N., Wang Y. K., “Thermal analysis simulation of a single pulse laser drilling process”, Materials Science Forum, v800-801, p869-873, 2014.
    [13] Hagemann H.-J., Gudat W., Kunz C., “Optical constants from the far infrared to the x-ray region: Mg, Al, Cu, Ag, Au, Bi, C, and Al2O3”, Journal of the Optical Society, v65(6), p742-744, 1975.
    [14] Yao K. C., Lin J., “The characterization of the hole-contour and plume ejection in the laser drilling with various inclination angles”, Optics and Laser Technology, v48, p110-116, 2013.
    [15] Alexander H. Slocum., “Precision Machine Design”, International Editions, Prentice-Hall, UK, P61-72, 1992.
    [16] Lei W.T., Hsu Y.Y., “Accuracy test of five-axis CNC machine tool with 3D probe–ball. Part I: design and modeling”, International Journal of Machine Tools & Manufacture, v42, p1153-1162, 2002.
    [17] Srivasta A. K., Veldhuis S. C., Elbestawit M. A. ,“Modelling geometric and thermal errors in a five-axis CNC machine tool”, International Journal of Machine Tools and Manufacture, v35(9), p1321-1337, 1995.
    [18] Tsutsumi, Masaomi, and Akinori Saito. "Identification of angular and positional deviations inherent to 5-axis machining centers with a tilting-rotary table by simultaneous four-axis control movements." International Journal of Machine Tools and Manufacture, v44 (12), p1333-1342, 2004.
    [19] 莊鎮嘉,鄭錦聰,“MATLAB程式設計實務”,全華圖書股份有限公司,2008.
    [20] Zazula Jan M., “On Graphite Transformations at High Temperature and Pressure Induced by Absorption of the LHC Beam”, CERN-LHC-Project-Note-78, 1997.
    [21] Mitytoyo Corporation. “Surface Roughness Measuring Tester SJ-210 User’s Manual”, 2010.
    [22] 王信舜, “建立五軸工具機誤差補償機制之後處理器”, 中華大學機械與航太工程研究所碩士論文, 2005.

    下載圖示 校內:2025-09-01公開
    校外:2025-09-01公開
    QR CODE