簡易檢索 / 詳目顯示

研究生: 姜永秀
Chiang, Yung-Show
論文名稱: 以膠原蛋白交聯劑促進牙本質鍵結之評估
Effects of collagen cross-linkers on dentin bonding
指導教授: 莊淑芬
Juang, Shu-Fen
共同指導教授: 陳玉玲
Chen, Yu-Ling
學位類別: 碩士
Master
系所名稱: 醫學院 - 口腔醫學研究所
Institute of Oral Medicine
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 64
中文關鍵詞: 膠原蛋白交聯劑核黃素紫外光戊二醛膠體電泳微拉伸鍵結強度冷熱循環奈米滲漏
外文關鍵詞: collagen, cross-linker, riboflavin, UVA, glutaraldehyde, gel electrophoresis, microtensile bond strength, thermocycles, nanoleakage
相關次數: 點閱:102下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 維持複合樹脂和牙本質間穩定的鍵結一直是復形牙科的一項挑戰。牙本質由礦物質與膠原纖維組成。在樹脂黏著時,藉由樹脂單體滲入牙本質酸蝕後露出之膠原蛋白纖維間,所構成的混合層(hybrid layer)可提供有效的鍵結形成,此有賴於穩定的膠原蛋白纖維結構。但在口內咬合運動機械疲勞後,膠原蛋白可能會發生降解的情形。近年來,利用核黃素及紫外光照射以促進膠原蛋白交聯的方式已應用於生物體。本實驗目的研究0.1%或1%核黃素配合紫外光照射時間,和處以戊二醛1分鐘等不同處理引發的交聯作用在動物膠原蛋白纖維溶液的效果以及對牙本質黏著的影響。
    第一部分,先將不同濃度的交聯劑加入膠原蛋白纖維溶液之中,以膠體電泳方式測知利用戊二醛或是核黃素及紫外光照射均可獲得交聯效果;並且進一步利用奈米壓痕測試將處理的牙齒表面彈性模數及硬度之變化,選定0.1%核黃素照射紫外光1分鐘、0.1%核黃素照射紫外光2分鐘、1%核黃素照射紫外光1分鐘和戊二醛進行牙本質鍵結測試。第二部分,將拔下來無齲齒的人類牙齒之牙本質包埋,以不同交聯劑或蒸餾水處理後,再與樹脂黏著,並置放於37℃水槽中靜置隔夜,之後將黏著試片利用切割機切成0.9 毫米x 0.9毫米大小,降解測試是利用攝氏5到55度的五千次冷熱循環或置放於7天的膠原蛋白酵素溶液當中,最後將初期及經降解測試的試片分別固定於萬用試驗機上面進行拉力測試,直到斷裂,並且利用掃描式電子顯微鏡來判讀斷裂模式。另外一部分試片以銀離子染色之後,使用穿透式電子顯微鏡觀察奈米滲漏現象。
    結果發現核黃素及紫外光照射或是戊二醛均有提升初期黏著強度的效果。其中,戊二醛抵抗酵素降解的能力較差;而經0.1%核黃素照射紫外光2分鐘、1%核黃素照射紫外光1分鐘處理之後,經過降解挑戰測試仍可維持較高的牙本質黏著強度,且未有測試前即斷裂的情形出現,較多是斷在複合樹脂或是牙本質本身,並且較少發生奈米滲漏現象。

    A stable bond between composite resin and dentin remains a challenge in restorative dentistry. Dentin is composed of minerals and collagen. To establish effective resin-dentin bonding, the hybrid layer formed by the infiltration of resin monomers into collagen fibrils should be structurally stable. Moreover, degradation of collagen may happen after fatigue or functioning. Recently, combining riboflavin (RF) and ultraviolet A (UVA) for collagen cross-linking is used in biomedical treatments. The purpose of this study was to investigate the collagen cross-linking effects of this agent and its application in improving dentin bond strengths.
    In the first part, collagen solutions were mixed with 0.1%, 1% RF (R0.1, R1) combined with UVA 1, 2, 5 minutes (U1, U2, U5) or 5% glutaraldehyde (GD) for 1 minute. The cross-linking effect of the agents was confirmed by gel electrophoresis. The dentin surface receiving various collagen cross-linking treatments was examined by a nanoindenter under moist or dry condition for the mechanical properties. In the second part, thirty sound extracted human molars were embedded in epoxy resin and ground to expose dentin. The dentin surfaces are treated with these cross-linkers or distilled water, then received adhesive treatment and resin restorations. After storage for 24 hours in 37º C distilled water, restored teeth were sectioned perpendicular to the bonded interface into 0.9 mm x 0.9 mm microbeams. The resin-dentin beams were also subject to two degradation modes, 5000 thermocycles (TC) and 7-day enzymatic digestion (Enz), to examine their durability. The TC subgroups were given alternately in 5°C and 55°C water baths, each for 20-second dwell time. The Enz subgroups were treated with the collagenase solution for 7 days at 37°C. The microtensile bond strength test was used to evaluate the resin-dentin bond strength. The morphology of the fractured dentin-composite microbeams was evaluated by scanning electron microscopy (SEM). Transmission electron microscopy (TEM) was used to check the nanoleakage with silver stain.
    The gel electrophoresis and the nanoindentation have shown the collagen cross-linking in the RF/UVA and GD groups. According to the results of the gel electrophoresis and the nanoindentation, we chose R0.1U2, R1U1, R0.1U1, GD, and DW for the following tests. Both RF/UVA and GD increased the microtensile bond strength on dentin substrates after 24 hr water storage. The GD treatment increased the collagen cross-linkage but may induce over cross-linking effect to inhibit the infiltration of resin monomers. R0.1U2 promoted the highest early μTBS and had the most resistance to TC and Enz with the most cohesive failure and less nanoleakage, and without pre-test failure.

    ABSTRACT Ⅰ 中文摘要 III 誌謝 V LIST OF TABLES VIII LIST OF FIGURES IX Chapter 1 Introduction 1 1.1.Composition and structure of dentin 2 1.2.Dentin bonding 3 1.3.Nanoleakage and degradation of collagen 6 1.4.Type I collagen with intrinsic cross-links 7 1.5.Extrinsic collagen cross-linkers 10 1.6.Motivation and objective 14 Chapter 2 Materials and Methods 15 2.1.Gel electrophoresis analysis of collagen solution 17 2.2.Nanoindentation test of treated dentin surfaces 19 2.3.Microtensile bond strength test for resin-dentin bond strength 21 2.4.Fracture pattern analysis 27 2.5.Nanoleakage 28 Chapter 3 Results 31 3.1.Gel electrophoresis analysis 31 3.2.Nano-indentation 34 3.3.μTBS test 40 3.4.Fracture pattern 42 3.5.Nanoleakage 46 Chapter 4 Discussion 49 Chapter 5 Conclusion 56 Reference 57

    Aad G, Abbott B, Abdallah J, Abdelalim AA, Abdesselam A, Abdinov O, et al. (2011). Search for Diphoton Events with Large Missing Transverse Energy in 7 TeV Proton-Proton Collisions with the ATLAS Detector. Phys Rev Lett 106:121803.
    Abdalla AI, Garcia-Godoy F (1997). Bond strengths of resin-modified glass ionomers and polyacid-modified resin composites to dentin. American Journal of Dentistry 10:291-4.
    Al-Ammar A, Drummond JL, Bedran-Russo AK (2009). The Use of Collagen Cross-Linking Agents to Enhance Dentin Bond Strength. Journal of Biomedical Materials Research Part B-Applied Biomaterials 91B:419-424.
    AMARAL FLB, Colucci V, PALMA DIBB RG, CORONA SAM (2007). Assessment of in vitro methods used to promote adhesive interface degradation: a critical review. Journal of Esthetic and Restorative Dentistry 19:340-353.
    Ashwin PT, McDonnell PJ (2010). Collagen cross-linkage: a comprehensive review and directions for future research. Br J Ophthalmol 94:965-70.
    Bailey AJ, Paul RG, Knott L (1998). Mechanisms of maturation and ageing of collagen. Mech Ageing Dev 106:1-56.
    Bedran-Russo AKB, Pereira PNR, Duarte WR, Drummond JL, Yamauchi M (2007). Application of crosslinkers to dentin collagen enhances the ultimate tensile strength. Journal of Biomedical Materials Research Part B-Applied Biomaterials 80B:268-272.
    Bedran-Russo AKB, Pashley DH, Agee K, Drummond JL, Miescke KJ (2008). Changes in stiffness of demineralized dentin following application of collagen crosslinkers. Journal of Biomedical Materials Research Part B-Applied Biomaterials 86B:330-334.
    Bedran-Russo AKB, Yoo KJ, Ema KC, Pashley DH (2009). Mechanical Properties of Tannic-acid-treated Dentin Matrix. Journal of Dental Research 88:807-811.
    Bedran-Russo AKB, Vidal CMP, Dos Santos PH, Castellan CS (2010). Long-term effect of carbodiimide on dentin matrix and resin-dentin bonds. Journal of Biomedical Materials Research Part B-Applied Biomaterials 94B:250-255.
    Bogacki RE, Hunt RJ, del Aguila M, Smith WR (2002). Survival analysis of posterior restorations using an insurance claims database. Oper Dent 27:488-92.
    Bowen RL, Eick JD, Henderson DA, Anderson DW (1984). Smear layer: removal and bonding considerations. Oper Dent Suppl 3:30-4.
    Brannstrom M, Vojinovic O (1976). Response of the dental pulp to invasion of bacteria around three filling materials. ASDC J Dent Child 43:83-9.
    Burke FJ, Cheung SW, Mjor IA, Wilson NH (1999). Restoration longevity and analysis of reasons for the placement and replacement of restorations provided by vocational dental practitioners and their trainers in the United Kingdom. Quintessence Int 30:234-42.
    Carrilho MR, Geraldeli S, Tay F, de Goes MF, Carvalho RM, Tjaderhane L, et al. (2007). In vivo preservation of the hybrid layer by chlorhexidine. J Dent Res 86:529-33.
    Carvalho RM, Mendonca JS, Santiago SL, Silveira RR, Garcia FC, Tay FR, et al. (2003). Effects of HEMA/solvent combinations on bond strength to dentin. J Dent Res 82:597-601.
    Castellan CS, Pereira PN, Grande RHM, Bedran-Russo K (2010). Mechanical characterization of proanthocyanidindentin matrix interaction. Dental Materials 26:968-973.
    Charulatha V, Rajaram A (2003). Influence of different crosslinking treatments on the physical properties of collagen membranes. Biomaterials 24:759-67.
    Cheung DT, Tong D, Perelman N, Ertl D, Nimni ME (1990). Mechanism of crosslinking of proteins by glutaraldehyde. IV: In vitro and in vivo stability of a crosslinked collagen matrix. Connect Tissue Res 25:27-34.
    Cilli R, Prakki A, de Araujo PA, Pereira JC (2009). Influence of glutaraldehyde priming on bond strength of an experimental adhesive system applied to wet and dry dentine. Journal of Dentistry 37:212-218.
    de La Rochette A, Birlouez-Aragon L, Silva E, Morliere P (2003). Advanced glycation endproducts as UVA photosensitizers of tryptophan and ascorbic acid: consequences for the lens. Biochimica Et Biophysica Acta-General Subjects 1621:235-241.
    Della Bona A, Anusavice KJ, DeHoff PH (2003). Weibull analysis and flexural strength of hot-pressed core and veneered ceramic structures. Dental Materials 19:662-669.
    Foote CS (1968). Mechanisms of photosensitized oxidation. There are several different types of photosensitized oxidation which may be important in biological systems. Science 162:963-70.
    Fung DT, Wang VM, Laudier DM, Shine JH, Basta-Pljakic J, Jepsen KJ, et al. (2009). Subrupture tendon fatigue damage. J Orthop Res 27:264-73.
    Gale M, Darvell B (1999). Thermal cycling procedures for laboratory testing of dental restorations. Journal of Dentistry 27:89-100.
    Gerrard J, Brown P, Fayle S (2002). Maillard crosslinking of food proteins I: the reaction of glutaraldehyde, formaldehyde and glyceraldehyde with ribonuclease. Food chemistry 79:343-349.
    Green B, Yao X, Ganguly A, Xu C, Dusevich V, Walker MP, et al. (2010). Grape seed proanthocyanidins increase collagen biodegradation resistance in the dentin/adhesive interface when included in an adhesive. J Dent 38:908-15.
    Han B, Jaurequi J, Tang BW, Nimni ME (2003). Proanthocyanidin: a natural crosslinking reagent for stabilizing collagen matrices. J Biomed Mater Res A 65:118-24.
    Hashimoto M, Ohno H, Kaga M, Endo K, Sano H, Oguchi H (2000). In vivo degradation of resin-dentin bonds in humans over 1 to 3 years. J Dent Res 79:1385-91.
    Hashimoto M, Ohno H, Sano H, Tay FR, Kaga M, Kudou Y, et al. (2002). Micromorphological changes in resin-dentin bonds after 1 year of water storage. J Biomed Mater Res 63:306-11.
    Hoshi K, Ejiri S, Probst W, Seybold V, Kamino T, Yaguchi T, et al. (2001). Observation of human dentine by focused ion beam and energy-filtering transmission electron microscopy. J Microsc 201:44-9.
    Ishioka S, Caputo AA (1989). Interaction between the dentinal smear layer and composite bond strength. J Prosthet Dent 61:180-5.
    Kanca J, 3rd (1992). Resin bonding to wet substrate. 1. Bonding to dentin. Quintessence Int 23:39-41.
    Kanca J, 3rd (1996). Wet bonding: effect of drying time and distance. American Journal of Dentistry 9:273-6.
    Khor E (1997). Methods for the treatment of collagenous tissues for bioprostheses. Biomaterials 18:95-105.
    Linde A (1989). Dentin matrix proteins: composition and possible functions in calcification. Anat Rec 224:154-66.
    Macedo GV, Yamauchi M, Bedran-Russo AK (2009). Effects of Chemical Cross-linkers on Caries-affected Dentin Bonding. Journal of Dental Research 88:1096-1100.
    Mjor IA, Moorhead JE, Dahl JE (2000). Reasons for replacement of restorations in permanent teeth in general dental practice. Int Dent J 50:361-6.
    Nakabayashi N, Kojima K, Masuhara E (1982). The promotion of adhesion by the infiltration of monomers into tooth substrates. J Biomed Mater Res 16:265-73.
    Nakabayashi N (1985). Bonding of restorative materials to dentine: the present status in Japan. Int Dent J 35:145-54.
    Nakabayashi N, Saimi Y (1996). Bonding to intact dentin. J Dent Res 75:1706-15.
    Nikaido T, Kunzelmann KH, Chen H, Ogata M, Harada N, Yamaguchi S, et al. (2002). Evaluation of thermal cycling and mechanical loading on bond strength of a self-etching primer system to dentin. Dental Materials 18:269-275.
    Nimni ME, Olsen BR, Kang AH (1988). Collagen Boca Raton, Fla.: CRC Press.
    Orgel JP, Miller A, Irving TC, Fischetti RF, Hammersley AP, Wess TJ (2001). The in situ supermolecular structure of type I collagen. Structure 9:1061-9.
    Pashley DH, Livingston MJ, Greenhill JD (1978). Regional resistances to fluid flow in human dentine in vitro. Arch Oral Biol 23:807-10.
    Pashley DH (1992). The effects of acid etching on the pulpodentin complex. Oper Dent 17:229-42.
    Pashley DH, Agee KA, Carvalho RM, Lee KW, Tay FR, Callison TE (2003a). Effects of water and water-free polar solvents on the tensile properties of demineralized dentin. Dent Mater 19:347-52.
    Pashley DH, Agee KA, Wataha JC, Rueggeberg F, Ceballos L, Itou K, et al. (2003b). Viscoelastic properties of demineralized dentin matrix. Dent Mater 19:700-6.
    Pashley DH, Tay FR, Yiu C, Hashimoto M, Breschi L, Carvalho RM, et al. (2004). Collagen degradation by host-derived enzymes during aging. J Dent Res 83:216-21.
    Perdigao J, Swift EJ, Cloe BC (1993). Effects of etchants, surface moisture, and resin composite on dentin bond strengths. American Journal of Dentistry 6:61-4.
    Perdigao J, Van Meerbeek B, Lopes MM, Ambrose WW (1999). The effect of a re-wetting agent on dentin bonding. Dent Mater 15:282-95.
    Perdigao J (2010). Dentin bonding-Variables related to the clinical situation and the substrate treatment. Dental Materials 26:E24-E37.
    Pereira PN, Bedran-de-Castro AK, Duarte WR, Yamauchi M (2007). Removal of noncollagenous components affects dentin bonding. J Biomed Mater Res B Appl Biomater 80:86-91.
    Pioch T, Staehle HJ, Duschner H, Garcia-Godoy F (2001). Nanoleakage at the composite-dentin interface: a review. American Journal of Dentistry 14:252-8.
    Ritter AV, Swift EJ, Yamauchi M (2001). Effects of phosphoric acid and glutaraldehyde-HEMA on dentin collagen. European Journal of Oral Sciences 109:348-353.
    Roberson TM, Heymann H, Swift EJ, Sturdevant CM (2006). Sturdevant's art and science of operative dentistry. 5th ed. St. Louis, Mo.: Mosby Elsevier.
    Saboia V, Silva FCFA, Nato F, Mazzoni A, Cadenaro M, Mazzotti G, et al. (2009). Analysis of differential artificial ageing of the adhesive interface produced by a two step etch and rinse adhesive. European Journal of Oral Sciences 117:618-624.
    Sano H, Shono T, Sonoda H, Takatsu T, Ciucchi B, Carvalho R, et al. (1994). Relationship between surface area for adhesion and tensile bond strength--evaluation of a micro-tensile bond test. Dent Mater 10:236-40.
    Sano H, Takatsu T, Ciucchi B, Horner JA, Matthews WG, Pashley DH (1995a). Nanoleakage: leakage within the hybrid layer. Oper Dent 20:18-25.
    Sano H, Takatsu T, Ciucchi B, Russell CM, Pashley DH (1995b). Tensile properties of resin-infiltrated demineralized human dentin. J Dent Res 74:1093-102.
    Sano H, Yoshiyama M, Ebisu S, Burrow MF, Takatsu T, Ciucchi B, et al. (1995c). Comparative SEM and TEM observations of nanoleakage within the hybrid layer. Oper Dent 20:160-7.
    Sarrett DC (2005). Clinical challenges and the relevance of materials testing for posterior composite restorations. Dent Mater 21:9-20.
    Sharrock P, Gregoire G (2010). HEMA reactivity with demineralized dentin. Journal of Dentistry 38:331-335.
    Southern LJ, Hughes H, Lawford PV, Clench MR, Manning NJ (2000). Glutaraldehyde-induced cross-links: a study of model compounds and commercial bioprosthetic valves. J Heart Valve Dis 9:241-8; discussion 248-9.
    Spoerl E, Wollensak G, Seiler T (2004). Increased resistance of crosslinked cornea against enzymatic digestion. Curr Eye Res 29:35-40.
    Standardization IOf (1994). Dental materials-guidance on testing of adhesion to tooth structure: International Organization for Standardization.
    Sung HW, Hsu CS, Wang SP, Hsu HL (1997). Degradation potential of biological tissues fixed with various fixatives: An in vitro study. Journal of Biomedical Materials Research 35:147-155.
    Sung HW, Chang Y, Chiu CT, Chen CN, Liang HC (1999). Crosslinking characteristics and mechanical properties of a bovine pericardium fixed with a naturally occurring crosslinking agent. J Biomed Mater Res 47:116-26.
    Sung HW, Chang WH, Ma CY, Lee MH (2003). Crosslinking of biological tissues using genipin and/or carbodiimide. Journal of Biomedical Materials Research Part A 64A:427-438.
    Tay FR, Pashley DH, Yoshiyama M (2002). Two modes of nanoleakage expression in single-step adhesives. J Dent Res 81:472-6.
    Timkovich R (1977). Detection of the stable addition of carbodiimide to proteins. Anal Biochem 79:135-43.
    Toledano M, Osorio R, Osorio E, Aguilera FS, Yamauti M, Pashley DH, et al. (2007a). Effect of bacterial collagenase on resin-dentin bonds degradation. J Mater Sci Mater Med 18:2355-61.
    Toledano M, Osorio R, Osorio E, Aguilera FS, Yamauti M, Pashley DH, et al. (2007b). Durability of resin-dentin bonds: effects of direct/indirect exposure and storage media. Dent Mater 23:885-92.
    Van Meerbeek B, Peumans M, Poitevin A, Mine A, Van Ende A, Neves A, et al. (2010). Relationship between bond-strength tests and clinical outcomes. Dental Materials 26:e100-e121.
    Watanabe I, Nakabayashi N, Pashley DH (1994). Bonding to ground dentin by a phenyl-P self-etching primer. J Dent Res 73:1212-20.
    Wollensak G, Spoerl E, Seiler T (2003a). Stress-strain measurements of human and porcine corneas after riboflavin-ultraviolet-A-induced cross-linking. J Cataract Refract Surg 29:1780-5.
    Wollensak G, Spoerl E, Seiler T (2003b). Riboflavin/ultraviolet-a-induced collagen crosslinking for the treatment of keratoconus. Am J Ophthalmol 135:620-7.
    Wollensak G (2006). Crosslinking treatment of progressive keratoconus: new hope. Current Opinion in Ophthalmology 17:356-360.
    Wollensak G, Redl B (2008). Gel electrophoretic analysis of corneal collagen after photodynamic cross-linking treatment. Cornea 27:353-6.
    Yamauchi M, Shiiba M (2008). Lysine hydroxylation and cross-linking of collagen. Methods Mol Biol 446:95-108.
    Zeeman R, Dijkstra PJ, van Wachem PB, van Luyn MJ, Hendriks M, Cahalan PT, et al. (1999). Successive epoxy and carbodiimide cross-linking of dermal sheep collagen. Biomaterials 20:921-31.
    Zhang Y, Conrad AH, Conrad GW (2011). Effects of ultraviolet-A and riboflavin on the interaction of collagen and proteoglycans during corneal cross-linking. J Biol Chem 286:13011-22.

    無法下載圖示 校內:2021-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE