| 研究生: |
林宏晉 Lin, Hung-Chin |
|---|---|
| 論文名稱: |
探討超音波振盪與空蝕作用而非使用鑽石晶種法預處理基板對鑽石成核的影響 Effects of sonication and cavitation pretreatments on diamond nucleation without diamond seeding |
| 指導教授: |
曾永華
Tzeng, Yon-hua |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 110 |
| 中文關鍵詞: | 鑽石成核 、超音波作用與空蝕作用 、微波電漿化學氣象沉積 |
| 外文關鍵詞: | diamond nucleation, sonication and cavitation effect, MPCVD |
| 相關次數: | 點閱:84 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鑽石成核於經由超音波振盪與空蝕作用而非使用鑽石晶種法預處理基板的方法,藉由微波電漿化學氣相沉積系統,空蝕作用溶液選用水、乙醇、乙二醇來進行超音波振盪基板,而超音波振盪則使用鉬粉、鎢粉、二氧化矽片來進行基板振盪預處理,所得之成核密度高達未處理的一千倍到一萬倍。
基板的製備是利用濺鍍機濺鍍薄膜於二氧化矽晶圓上,微波電漿化學氣相沉積系統主要是使用H_2-rich/CH_4氣體混合參數,CH_4濃度使用10%,腔體工作壓力設定95 Torr,基板溫度950-1050°C之間,實際鑽石製程時間為七分鐘使環境穩定並加熱基板,與清理基板表面,十五分鐘鑽石成核與成長,總共製程時間為二十二分鐘。
利用掃描式電子顯微鏡判斷與計算,以水進行空蝕作用二氧化矽晶圓先濺鍍鉻薄膜再濺鍍鉬銅合金薄膜之試片,可以使得鑽石成核密度超過〖10〗^8 〖 cm〗^(-2),超音波振盪作用基板預處理則平均得到之鑽石成核密度約為〖10〗^7 〖 cm〗^(-2)。藉由AFM量測預處理表面之表面粗糙度發現超音波振盪作用基板造成的表面粗糙度比起空蝕作用基板還大,但表面粗糙度越大,不一定擁有高成核密度。透過532nm綠光拉曼分析,探討超音波振盪與空蝕作用所設計的三種基板,鑽石特徵峰落在1335〖 cm〗^(-1)左右,伴隨著鑽石缺陷、非鑽石相之D-band與G-band以及TPA訊號。
超音波振盪與空蝕作用而非使用鑽石晶種法預處理基板的方法詳細機制尚未明朗,但是大概是使表面缺陷,製造表面粗糙度所致,兩種預處理的方法好處在於操作簡單、成本低廉,且不需要使用鑽石晶種法與偏壓法即可達到高成核密度。
Diamond nucleation on the substrates pre-treated by sonication and cavitation effects without diamond seeding methods by microwave plasma chemical vapor deposition can increase the diamond nucleation density by more than three to four orders magnitude from that of non-treated substrates. In order to do the experiment of sonication and cavitation effects, choosing water, alcohol, Ethylene Glycol for cavitation and Mo powder, W powder, SiO2 flakes for sonication to test the effects by those methods is the key step for the substrate pretreatments. Diamond nucleation of the water cavitation pretreatment samples which are first sputtered chromium thin film, then sputtered MoCu thin film can make the diamond nucleation density exceed 〖10〗^8 〖 cm〗^(-2), besides, sonication pretreatment samples can reach about 〖10〗^7 〖 cm〗^(-2). Surface roughness treated by the sonication effect is greater than the cavitation effect, but the greater the surface roughness, it does not necessarily have a higher nucleation density.
[1] D. Das and R. N. Singh, "A review of nucleation, growth and low temperature synthesis of diamond thin films," International Materials Reviews, vol. 52, no. 1, pp. 29-64, 2013.
[2] A. Hirsch, "The era of carbon allotropes," Nat Mater, vol. 9, no. 11, pp. 868-71, Nov 2010.
[3] J. J. Gracio, Q. H. Fan, and J. C. Madaleno, "Diamond growth by chemical vapour deposition," Journal of Physics D: Applied Physics, vol. 43, no. 37, 2010.
[4] J. C. Angus, "Diamond and diamond-like films," Thin Solid Films, vol. 216, no. 1, pp. 126-133, 1992/08/28/ 1992.
[5] S. T. Lee, Z. Lin, and X. Jiang, "CVD diamond films: nucleation and growth," Materials Science and Engineering: R: Reports, vol. 25, no. 4, pp. 123-154, 1999/07/30/ 1999.
[6] E. Monroy, F. Omnes, and F. Calle, "Wide-bandgap semiconductor ultraviolet photodetectors," (in English), Semicond. Sci. Technol., Review vol. 18, no. 4, pp. R33-R51, Apr 2003, Art no. Pii s0286-1272(03)35959-0.
[7] H. O. Pierson, "Handbook of carbon, graphite, diamond, and fullerenes : properties, processing, and applications," 1993.
[8] J. A. Montes-Gutiérrez et al., "Afterglow, thermoluminescence and optically stimulated luminescence characterization of micro-, nano- and ultrananocrystalline diamond films grown on silicon by HFCVD," Diamond and Related Materials, vol. 85, pp. 117-124, 2018/05/01/ 2018.
[9] J. E. Butler and A. V. Sumant, "The CVD of nanodiamond materials," Chemical Vapor Deposition, vol. 14, no. 7‐8, pp. 145-160, 2008.
[10] K. L. Choy, "Chemical vapour deposition of coatings," Progress in Materials Science, vol. 48, no. 2, pp. 57-170, 2003/01/01/ 2003.
[11] M. Frenklach et al., "Homogeneous Nucleation of Diamond Powder in the Gas Phase," Journal of Applied Physics, vol. 66, pp. 395-399, 08/01 1989.
[12] P. Ascarelli and S. Fontana, "Analysis and modeling of diamond heterogeneous nucleation kinetics," Diamond and Related Materials, vol. 2, no. 5-7, pp. 990-996, 1993.
[13] L. Kostadinov, D. Dobrev, K. Okano, T. Kurosu, and M. Iida, "Nucleation and growth of diamond particles from the vapor phase," Diamond and Related Materials, vol. 1, no. 2-4, pp. 157-160, 1992.
[14] C. N. Nanev, "7 - Theory of Nucleation," in Handbook of Crystal Growth (Second Edition), T. Nishinaga Ed. Boston: Elsevier, 2015, pp. 315-358.
[15] P. O. Joffreau, R. Haubner, and B. Lux, "Low-pressure diamond growth on refractory metals," International Journal of Refractory Metals and Hard Materials, vol. 7, pp. 186-194, 12/01 1988.
[16] H. Liu and D. S. Dandy, "Studies on nucleation process in diamond CVD: an overview of recent developments," Diamond and Related Materials, vol. 4, no. 10, pp. 1173-1188, 1995/09/01/ 1995.
[17] J. Singh and M. Vellaikal, "Nucleation of diamond during hot filament chemical vapor deposition," Journal of applied physics, vol. 73, no. 6, pp. 2831-2834, 1993.
[18] D. Das and R. Singh, "A review of nucleation, growth and low temperature synthesis of diamond thin films," International Materials Reviews, vol. 52, no. 1, pp. 29-64, 2007.
[19] W. R. Lambrecht, C. H. Lee, B. Segall, J. C. Angus, Z. Li, and M. Sunkara, "Diamond nucleation by hydrogenation of the edges of graphitic precursors," Nature, vol. 364, no. 6438, pp. 607-610, 1993.
[20] C. Chang, Y. Liao, G. Z. Wang, Y. R. Ma, and R. C. Fang, "4 - CVD Diamond Growth," in Crystal Growth Technology, K. Byrappa, T. Ohachi, W. Michaeli, H. Warlimont, and E. Weber Eds. Norwich, NY: William Andrew Publishing, 2003, pp. 93-141.
[21] M. P. D’Evelyn, J. D. Graham, and L. R. Martin, "[100] versus [111] diamond growth from methyl radicals and/or acetylene," Journal of Crystal Growth, vol. 231, no. 4, pp. 506-519, 2001/10/01/ 2001.
[22] R. C. Mani and M. K. Sunkara, "Kinetic faceting of multiply twinned diamond crystals during vapor phase synthesis," Diamond and Related Materials, vol. 12, no. 3, pp. 324-329, 2003/03/01/ 2003.
[23] V. Ralchenko et al., "Quality of diamond wafers grown by microwave plasma CVD: effects of gas flow rate," Diamond and Related Materials, vol. 8, no. 2, pp. 189-193, 1999/03/01/ 1999.
[24] H. Sternschulte, T. Bauer, M. Schreck, and B. Stritzker, "Comparison of MWPCVD diamond growth at low and high process gas pressures," Diamond and Related Materials, vol. 15, no. 4, pp. 542-547, 2006/04/01/ 2006.
[25] K.-L. Chuang, L. Chang, and C.-A. Lu, "Diamond nucleation on Cu by using MPCVD with a biasing pretreatment," Materials Chemistry and Physics, vol. 72, no. 2, pp. 176-180, 2001/11/01/ 2001.
[26] X. Li, J. Perkins, R. Collazo, R. J. Nemanich, and Z. Sitar, "Investigation of the effect of the total pressure and methane concentration on the growth rate and quality of diamond thin films grown by MPCVD," Diamond and Related Materials, vol. 15, no. 11, pp. 1784-1788, 2006/11/01/ 2006.
[27] N. N. Naguib et al., "Enhanced nucleation, smoothness and conformality of ultrananocrystalline diamond (UNCD) ultrathin films via tungsten interlayers," Chemical Physics Letters, vol. 430, no. 4-6, pp. 345-350, 2006.
[28] A. R. Badzian and R. C. DeVries, "Crystallization of diamond from the gas phase; Part 1," Materials Research Bulletin, vol. 23, no. 3, pp. 385-400, 1988/03/01/ 1988.
[29] C.-F. Chen, S.-H. Chen, H.-W. Ko, and S. E. Hsu, "Low temperature growth of diamond films by microwave plasma chemical vapor deposition using CH4 +CO2 gas mixtures," Diamond and Related Materials, vol. 3, no. 4, pp. 443-447, 1994/04/01/ 1994.
[30] S. Matsumoto, Y. Sato, M. Kamo, and N. Setaka, "Vapor Deposition of Diamond Particles from Methane," Japanese Journal of Applied Physics, vol. 21, no. Part 2, No. 4, pp. L183-L185, 1982/04/20 1982.
[31] X. Wang, T. Zhao, F. Sun, and B. Shen, "Comparisons of HFCVD diamond nucleation and growth using different carbon sources," Diamond and Related Materials, vol. 54, pp. 26-33, 2015/04/01/ 2015.
[32] Z. Yu and A. Flodström, "Pressure dependence of growth mode of HFCVD diamond," Diamond and Related Materials, vol. 6, no. 1, pp. 81-84, 1997/01/01/ 1997.
[33] M. Schwander and K. Partes, "A review of diamond synthesis by CVD processes," Diamond and Related Materials, vol. 20, no. 9, pp. 1287-1301, 2011/10/01/ 2011.
[34] M. Maschmann, T. Fisher, and P. Amama, "Enhanced Control of Single-Walled Carbon Nanotube Properties Using MPCVD with DC Electrical Bias," 2011.
[35] E. Vaghri, Z. Khalaj, and M. Ghoranneviss, "Preparation and characterization of diamond-like carbon films on various substrates by PECVD system," Studia Universitatis Babes-Bolyai Chemia, vol. 3, pp. 143-150, 09/03 2012.
[36] A. B. Suriani et al., "Hydrogenated Amorphous Carbon Films," vol. 5, 2010, pp. 79-99.
[37] H. O. Pierson, Handbook of carbon, graphite, diamonds and fullerenes: processing, properties and applications. William Andrew, 2012.
[38] T.-S. Chen, S.-E. Chiou, and S.-T. Shiue, "The effect of different radio-frequency powers on characteristics of amorphous boron carbon thin film alloys prepared by reactive radio-frequency plasma enhanced chemical vapor deposition," Thin Solid Films, vol. 528, pp. 86–92, 01/15 2013.
[39] M. Vilotijevic, G. Nebojsa, M. Ljiljana, and M. Slobodan, "Chemical vapour deposition of diamond using low pressure flat combustion flame," Journal of the Serbian Chemical Society, vol. 71, 02/01 2006.
[40] Y. Gurbuz, O. Esame, I. Tekin, W. P. Kang, and J. L. Davidson, "Diamond semiconductor technology for RF device applications," Solid-State Electronics, vol. 49, no. 7, pp. 1055-1070, 2005/07/01/ 2005.
[41] W. A. Yarbrough and R. Messier, "Current issues and problems in the chemical vapor deposition of diamond," Science, vol. 247, no. 4943, pp. 688-696, 1990.
[42] H. Makita, K. Nishimura, N. Jiang, A. Hatta, T. Ito, and A. Hiraki, "Ultrahigh particle density seeding with nanocrystal diamond particles," Thin Solid Films, vol. 281-282, pp. 279-281, 1996/08/01/ 1996.
[43] R. M. De Barros et al., "Dispersion liquid properties for efficient seeding in CVD diamond nucleation enhancement," Diamond and related Materials, vol. 5, no. 11, pp. 1323-1332, 1996.
[44] M. J. Chiang and M. H. Hon, "Positive dc bias-enhanced diamond nucleation with high CH4 concentration," Diamond and Related Materials, vol. 10, no. 8, pp. 1470-1476, 2001/08/01/ 2001.
[45] B. R. Stoner, G. H. M. Ma, S. D. Wolter, and J. T. Glass, "Characterization of bias-enhanced nucleation of diamond on silicon by invacuo surface analysis and transmission electron microscopy," Physical Review B, vol. 45, no. 19, pp. 11067-11084, 05/15/ 1992.
[46] M. Katoh, M. Aoki, and H. Kawarada, "Plasma-Enhanced Diamond Nucleation on Si," Japanese Journal of Applied Physics, vol. 33, no. Part 2, No. 2A, pp. L194-L196, 1994/02/01 1994.
[47] J.-C. Arnault, S. Saada, L. Intiso, and P. Bergonzo, "The effects of Methane Concentration on diamond nucleation and growth during bias enhanced nucleation on 3C-SiC(100) surfaces," MRS Proceedings, vol. 956, 01/01 2006.
[48] E. C. Tupper, "Chapter 8 - Propulsion," in Introduction to Naval Architecture (Fifth Edition), E. C. Tupper Ed. Oxford: Butterworth-Heinemann, 2013, pp. 161-203.