| 研究生: |
彭政展 Peng, Cheng-Chan |
|---|---|
| 論文名稱: |
超高真空離子束沉積碳/矽奈米複合薄膜之機械性質與微結構檢測之研究 A Study on the Inspection of Mechanical Properties and Microstructure of C/Si nanocomposite films by UHV Ion Beam Sputterig |
| 指導教授: |
鍾震桂
Chung, Chen-Kuei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 104 |
| 中文關鍵詞: | 殘留應力 、奈米壓痕器 、矽化矽奈米顆粒 |
| 外文關鍵詞: | residual stress, nanoindentation, SiC nano-particles |
| 相關次數: | 點閱:126 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
論 文 摘 要
本論文主要採超高真空離子束濺鍍(Ion Beam Sputtering, IBS)法與奈米壓痕技術(Nano-indentation)進行矽、碳、矽/碳/矽奈米複合薄膜的成長與機械性質檢測研究,探討製程參數、退火溫度及材料微結構變化,對於機械性質之影響,建立最佳化複合薄膜製程參數組合與複合膜之層數、厚度與機械性質的關係。
在雙層結構中,碳膜臨界厚度達100 nm時,碳/矽複合強度會大於原本類鑽碳,矽的成份也同時抑制沉積類鑽碳薄膜因晶格扭曲造成的變形。矽在應變率小的情況下,介面處反向拉扯碳原子的活動,限制類鑽碳膜變形的擴張,所以矽膜的總厚度越厚,抑制類鑽碳薄膜變形的效果就越佳。
當退火溫度達750℃時,非晶碳膜與多晶矽完全反應,SiC微粒高密度析出,矽膜夾層的厚度,依然是熱穩定性與SiC析出密度與粒徑的關鍵。當上層矽膜臨界厚度10 nm以上時,隨著退火溫度上升到900℃時,將形成3.25~7.25×1010 crystals/cm2高密度分佈SiC的奈米顆粒且SiC粒徑介於10~30 nm之間;並在複合結構Si/C/C=25/100/50 nm參數中,得到最佳的熱穩定性;隨著基質所包覆的SiC奈米粒子的粒徑越小,顆粒尺寸顆徑小於40 nm,則硬度值越高,熱穩定性越佳。
Abstract
In this research, the layer-by-layer carbon/silicon nanocomposite films are deposited by ultra high vacuum ion beam sputtering system (UHV-IBS) at room temperature together with post vacuum annealing. Then, it’s used nano-indentation technical to proceed the inspection of mechanical properties of silicon, carbon, silicon/carbon/silicon composite films. The relations between deposition procedures, rapid thermal temperature, micro structure of composite films of mechanical properties and residual stresses are established after process and material analysis in this thesis.
In the two-layer structure, when the critical thickness of carbon film reaches 100 nm, carbon/silicon composite strength will be originally greater than single carbons. The silicon involves the activity of the carbon atom backward in the interface in a situation that the strain rate is small, expansion of the limiting DLC carbon films. So total thickness of silicon films thick, the DLC films of suppressing strain result the better.
When temperature of annealing up to 750℃ in temperature, amorphous carbon and complete response with poly-crystalline silicon films. The high density of SiC particles were separated. While acting as above layer of silicon film of critical thickness 10 nm was rised to 900℃ that will be form nano-particles that 3.25~7.25×1010 crystals/cm2 high density distribution Sic and the particle size between 10 nm and 30 nm. In composite structure parament of Si/C/Si=25/100/25 nm can get the best thermal stability. As SiC wrapped up and covered of base carbon of nano-particles is the smaller than 40 nm for the size of particle, then the higher hardness is, the better thermal stability is.
參考文獻
1. R. Feynman, “There’s Plenty of room at the bottom”, a talk at the annual meeting of the American Physical Society (Caltech, 1959).
2. 陳光華, 鄧金祥, “奈米薄膜技術與應用”, 五南圖書出版公司, (2005)
3. 宋健民, “鑽石合成”, 全華科技圖書股份有限公司, 民國89年
4. A. Grill, “Diamond-Like Carbon: State of the Art”, Diamond and Related Materials 8 pp.428-434, 1999.
5. M. Eckel, G. Kampschulte and P. Markschlager, “Improvements in a-C film properties by metal incorporation and intermediate layers”, Surface and Coatings Technology 74-75, pp.827-832, 1995.
6. W.Y. Wu, J.M. Ting, “Growth and characteristics of carbon films with nano-sized metal particle”, Thin Solid Films 420-421, pp.166-171, 2002.
7. H. Zhang, Z. Xu, “Microstructure of nanocrystalline SiC films deposited by modified plasma-enhanced chemical vapor deposition”, Optical Materials 20, pp.177-181, 2002.
8. Pasqualina M. Sarro, “Silicon carbide as a new MEMS technology”, Sensors and Actuators 82, pp.210-218, 2000.
9. Conrad R. Stoldt, Carlo Carraro, W. Robert Ashurst, Di Gao, Roger T. Howe and Roya Maboudian, “A low-temperature CVD process for silicon carbide MEMS”, Sensors and Actuators A 97-98, pp.410-415, 2002.
10. Mingjiang Dai, Kesong Zhou, Zhenghai Yuan, Qian Ding and Zhiqiang Fu, “The cuttings performance of diamond and DLC-coated cutting tools”, Diamond and Related Materials 9, pp.1753-1757, 2000.
11. H. Voigt, F. Schitthelm, T. Lange, T. Kullick and R. Ferretti, “Diamond-like carbon-gate PH-ISFET”, Sensors and Actuators B 44, pp.441-445, 1997.
12. N. Mutsukuza, S. Tomita and Y. Mizum, “The mechanical properties of hydrogenated hard carbon films”, Thin Solid Films 214, pp.58-62, 1992.
13. E.I. Meleties, A. Erdemir and G.R. Fenske, “Tribological Characteristics of DLC Films and Duplex Plasma Nitriding/DLC coating Treatments”, Surface and Coatings Technology 73, pp.39-45, 1995.
14. H. Gleiter, “On the structure of grain boundaries in metals”, Mater. Sci. Eng. 52, 91 (1982).
15. 張力德,牟季美,「納米材料和納米結構」,科學出版社,北京,2001。
16. William D. Callister, Jr, “Fundamentals of materials science and engineering”, John Wiley & Sons, Inc., New York, pp.206-208, 2001.
17. Sam Zhang, Deen Sun, Yongqing Fu, Hejun Du, “Recent advances of superhard nanocomposite coatings: a review”, Surface and Coatings Technology 167, pp.113-119, 2003.
18. J. Musil, J. Vlcek, “Magnetron sputtering of alloy and alloy-based films”, Thin Solid Films 343-344, pp.47-50, 1999.
19. C. Mitterer, P.H. Mayrhofer, M. Beschliesser, P. Losbichler, P. Warbichler, F. Hofer, P.N. Gibson, W. Gissler, H. Hruby, J. Musil, J. Vlcek, “Microstructure and properties of nanocomposite Ti-B-N and Ti-B-C coatings”, Surface and Coatings Technology 120-121, pp.405-411, 1999.
20. J. Musil, “ Hard and superhard nanocomposite coatings”, Surface and Coatings Technology 125, pp.322-330, 2000.
21. S. Veprek, P. Nesladek, A. Niederhofer, F. Glatz, M. Jilek, M. sima, “Recet progress in the superhard nanocrystalline composites: towards their industrialization and understanding of the origin of the superhardness”, Surface and Coatings Technology 108-109, pp. 138-147, 1998.
22. A.L. Baia Neto, R.A. Santos, F.L. Freire, Jr. ,S.S. Camargo, R. Carius F. Finger, and W. Beyer, “Relation between mechanical and structural properties of silicon-incorporated hard a-C:H films”, Thin Solid Films 293, pp.206-211, 1997.
23. C.S. Lee, K.R. Lee, K.Y. Eun, K.H. Yoon, J.H. Han, “Structure and properties of Si incorporated tetrahedral amorphous carbon films prepared by hybrid filtered vacuum arc process”, Diamond and Related Materials 11, pp.198-203, 2002.
24. W.J. Wu, M.H. Hon, “Thermal stability of diamond-like carbonfilms with added silicon”, Surface and Coatings Technology 111, pp.134-140, 1999.
25. S.S. Camargo Jr., R.A. Santos, A.L. Baia-Neto, R. Carius, F. Finger, “Structural modifications and temperature stability of silicon incorporated diamond-like a-C:H films”, Thin Solid Films 332, pp.130-135, 1998.
26. J.C. Damasceno, S.S. Camargo Jr., F.L. Freire Jr., R. Carius, “Deposition of Si-DLC films with high hardness, low stress and high deposition rates”, Surface and Coatings Technology 133-134, pp.247-252, 2000.
27. K. Holmberg, J. Koskinen, H. Ronkainen, J. Vihersalo, J. Phirvonen and J. Likonen, “Tribological Characteristics of Hydrogenated and Hydrogen-free Diamond-like Carbon Coatings”, Diamond Films Technol. 4(1994) p.113.
28. Naoto Kikuchi, Eiji Kusano, Tatsuya Tanaka, Akira Kinbara and Hidehito Nanto, “Preparation of amorphous Si1-xCx (0≦x≦1) films by alternate deposition of Si and C thin layers using a dual magnetron sputtering source”, Surface and Coatings Technology 149, pp.76-81, 2002.
29. H.C. Liou and J. Pretzer, “Effect of film Thickness and Cure Temperature on the Mechanical Properties of Fox Flowable Oxide Thin Film”, Materials Research Society Symposium-Proceedings 565, pp.239-246, 1999.
30. W.C. Oliver and G.M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” Journal of Materials Research 7, No. 6, pp.1564-1583, 1992.
31. Xiaodong Li, Bharat Bhushan, “A review of nanoindentation continuous stiffness measurement technique and its applications”, Materials Characterization 48, pp.11-36, 2002.
32. F.M. Borodich, L. M. Keer and C.S. Korach, “Analytical study of fundamental nanoindentation test relations for indenters of non-ideal shapes”, Nanotechnology 14, pp.803-808, 2003.
33. Nano Indenter XP user’s manual, MTS, 2001.
34. S. Veprek, Ali S. Argon, “Mechanical properties of superhard nanocomposites”, Surface and Coatings Technology 146-147, pp.175-182, 2001.
35. J. Musil, F. Kunc, H. Zeman, H. Polakova, “Relationships between hardness, Young’s modulus and elastic recovery in hard nanocomposite coatings”, Surface and Coatings Technology 154, pp.304-313, 2002.
36. Ranjana Saha and William D.Nix, “Effect of the substrate on the determination of thin film mechanical properties by nanoindentation”, Acta Materialia 50, pp. 23-38, 2002.
37. B.D. Fabes, W.C. Oliver, “The determination of film hardness from the composite response of film and substrate to nanometer scale indentations”, Journal of Materials Research 7, No. 11, pp.3056-?, 1992.
38. 施孟君, 何恕德, 林鶴南, “基材效應對薄膜奈米壓痕量測之影響”, 中國材料學會年會論, 2002.
39. Q. Ma and D.R. Clarke, “Size Dependence of the Hardness of Silver Single Crystals”, Journal of Materials Research 10, pp.853-863, 1995.
40. M.B. Daia, P. Aubert, S. Labdi, C. Sant, F.A. Sadi, Ph. Houdy, and J.L. Bozet, “Nanoindentation investigation of Ti/TiN multilayers films”, Journal of Applied Physics 87, pp.7753-7757, 2000.
41. H. Oettel and R. Wiedemann, “Residual stresses in PVD hard coatings”, Surface and Coatings Technology 76-77, pp.265-273, 1995.
42. A.A. Voevodin and M.S. Donley, “Preparation of amorphous diamond-like carbon by pulsed laser deposition: a critical review”, Surface and Coatings Technology 82, pp.199-213, 1996.
43. D.L. Pappas and J. Hopwood, “Deposition of diamond-like carbon using a planar radio frequency induction plasma”, Journal of Vacuum Sciences and Technology A 12 , No.4 pp.1576-1582, 1994.
44. X.L. Peng and T.W. Clyne, “Mechanical stability of DLC films on metallic substrates: PartⅠ-Film structure and residual stress levels”, Thin Solid Films 312, pp.207-218, 1998.
45. 白木 靖寬, 吉田 貞史編著, 王建義編譯, "薄膜工程學", 全華科技圖書股份有限公司,(2006).
46. Y, Huang, A.J. Rosakis, “Extension of Stoney’s formula to non-uniform temperature distributions in thin film/substrate systems. The case of radial symmetry”, Journal of the Mechanics and Physics of Solids 53, pp.2483-2500, 2005.
47. J.M. Ting, and H. Lee, “DLC composite thin films by sputter deposition”, Diamond and Related Materials 11, pp.1119-1123, 2002.
48. L. Gou, C. Qi, J. Ran, and C. Zheng, “SiC film deposition by DC magnetron sputtering”, Thin Solid Films 345, pp.42-44, 1999.
49. R.A. Simao, A.K. Costa, C.A. Achete and S.S. Jr. Camargo, ‘Magnetron sputtering SiC films investigated by AFM’, Thin Solid Films 377-378, pp.490-494, 2000.
50. R.B. King, “Elastic Analysis of Some Punch Problems for A layered Medium,” Int. J. Solids Structure, Vol. 23, No. 12, pp. 1657-1664, 1987.
51. S.J. Bull, D.S. Rickerby, J.C. Knight and T.F. Page, “?”Surf. Eng., 8 (1992) 193
52. 汪建民主編, “材料分析”, 中國材料科學學會, 民87年10月
53. J. Robertson, “Diamond-like amorphous carbon”, Materials Science and Engineering R37, pp.129-281, 2002
54. M.A. Capano, N.T. McDevitt, R.K. Singh and F. Qian, “Characterization of amorphous carbon thin films”, Journal of Vacuum Science & Technology A 14, pp.431-435, 1996.
55. M.A. Tamor and W.C. Vassel, J. Appl. Phys., 76 (1994) 3923.
56. J. Schwan, S. Ulrich, V. Batori, H. Ehrhardt and S.R.P. Silva, “Raman spectroscopy on amorphous carbon films”, Journal of Applied Physics 80, pp.440-447, 1996.
57. M.K. Fung, W.C. Chan, Z.Q. Gao, I. Bello, C.S. Lee and S.T. Lee, “Effect of Nitrogen Incorporation into Diamond-Like Carbon Films by ECR-CVD”, Diamond and Related Materials 8, pp.472-476, 1999.
58. 艾啟峰, 真空科技, 3 (1992) 10.
59. , V. J. Morris, A. R. Kirby, A.P. Gunning, “Atomic Force Microscopy for Biologists”, Imperial College Press: London, (1999.)
60. Park Scientific Instruments Corp., Users Guide to Autoprobe CP, Part II, http://www.park.com.
61. NT-MDT Corp., SPM introduction, http://www.ntmdt.ru.
62. Digital Instruments Corp., Data Sheets, http://www.di.com.
63. 經濟部工業局, 工業技術人才培訓講義-AFM 原子力顯微鏡技術, 國立成功大學, (2003)
64. 捷東公司, “JEOL JSM-7000F Manual & Catalog”.
65. 鍾秉憲, 鈷奈米粒子之選擇性物理沉積,92年6月
66. 丁兆元, 任兆杏, “電子迴旋共振等離子體的研究與應用”, 物理學進展, 第12巻第一期, 1992.
67. Gorachand Ghosh, “Temperature dispersion of refractive indices in crystalline and amorphous silicon”, Applied Physics Letters 66, pp.3570-3572, 1995.
68. C.A. Davis, “A simple for the formation of compressive stress in thin films by ion bombardment”, Thin Solid Films 226, pp.30-34, 1992.
69. D.R. Mckenzie, D. Muller and B.A. Pailthorpe, phys. Rev. Lett., 67 (1991)773.
70. C. Weissmantel, Thin Solid Films, 92 (1982) 55.
71. F.C. Marques, R.G. Lacerda, V. Stolojan, D.C. CoX, and S.P. Silva, “Thermal expansion coefficient of hydrogenated amorphous carbon”, Applied Physics Letters 83, pp.3099-3101, 2003.
72. G. E. Dieter, “Mechanical Metallurgy”, McGraw-Hill , 1988.
73. 蔡名琨, 鍾震桂, “碳化矽/碳微奈米複合薄膜製程與性質檢測之研究”, 國立成功大學-機械工程學系 碩士論文, 九十二學年度.
74. C.K. Chung, B.H. Wu, “Thermally induced formation of SiC nanoparticles from Si/C/Si multilayers deposited by ultra-high-vacuum ion beam sputtering”, Nanotechnology 17, pp.3129-3133, 2006.