| 研究生: |
林家愷 Lin, Chia-Kai |
|---|---|
| 論文名稱: |
二維PEA2PbBr4鈣鈦礦中的載子動力學:激子-聲子相互作用和激子-激子湮滅的影響 Carrier Dynamics in 2D PEA2PbBr4 Perovskite: Impact of Exciton-Phonon Interaction and Exciton-Exciton Annihilation |
| 指導教授: |
徐旭政
Hsu, Hsu-Cheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 英文 |
| 論文頁數: | 77 |
| 中文關鍵詞: | 自由激子 、自陷激子 、激子-聲子交互作用 、歐傑複合 、激子-激子湮滅 、自發輻射放大 |
| 外文關鍵詞: | free exciton, self-trapped exciton, exciton-phonon interaction, Auger recombination, exciton-exciton annihilation, amplification spontaneous emission |
| ORCID: | https://orcid.org/0009-0004-5433-2219 |
| 相關次數: | 點閱:98 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
因其優異的光電特性,二維鈣鈦礦 (2D PVSK) 已成為近年來光電領域的熱門材料。然而2D PVSK中強烈的激子-聲子交互作用 (exciton-phonon interaction, E-P interaction) 導致了自陷激子 (self-trapped exciton, STE) 的形成,自陷激子會進一步影響二維鈣鈦礦的光電特性。由於深入了解二維鈣鈦礦中的載子動力學有助於二維鈣鈦礦在光電元件上發展,因此本文透過幾種光譜分析方法研究了激子-聲子交互作用對苯乙胺鉛溴 (PEA2PbBr4) 鈣鈦礦之載子動力學以及自發輻射放大 (amplified spontaneous emission, ASE) 理論閾值的影響。從光致螢光 (photoluminescence, PL) 測量中我們得知在溫度為78K時,螢光主要由自由激子和自陷激子產生。根據自由激子的半高寬隨溫度變化的關係以及X光繞射結果,我們發現激子-聲子交互作用的強度與薄膜的晶格應變成現正相關。
同時藉由時間解析光致螢光 (time-resolved PL) 光譜的數值擬合結果可以得知,降低激子-聲子交互作用可以降低自陷激子躍遷至自由激子狀態的位能差,進一步增加自由激子的複合放光,還提高了自陷激子去陷 (de-trapping) 的效率。除此之外,自發輻射放大閾值的模擬結果顯示,激子-聲子交互作用的減少可以使自發輻射放大的理論閾值從17.69 μJ/cm² 下降到17.62 μJ/cm²。同時,比起激子-聲子交互作用和歐傑複合 (Auger recombination) 引起的非輻射複合,激子-激子湮滅 (exciton-exciton annihilation, EEA) 的過程對於自發輻射放大閾值有較大的影響。
Two-dimensional (2D) perovskites (PVSK) are increasingly popular for photoelectric applications due to their outstanding optoelectronic properties. However, the formation of self-trapped excitons (STE) caused by strong exciton-phonon (E-P) interactions significantly impacts these properties. To enhance optoelectronic performance, a deep understanding of carrier dynamics is crucial. This study uses various optical spectroscopy analyses to investigate the impact of E-P interaction on carrier dynamics in phenethylammonium lead bromide (PEA2PbBr4). Micro-photoluminescence (μ-PL) measurements reveal that at 78K, the emission process is governed by a free exciton (FE) state and two STE states. Temperature-dependent full width at half maximum (FWHM) for FEs and x-ray diffraction (XRD) analysis indicate a positive correlation between E-P interaction strength and lattice strain in thin films. Time-resolved photoluminescence (TRPL) numerical fitting results show that reducing E-P interactions enhances both FE emission and STE de-trapping by lowering potential barriers in the de-trapping process.
According to the simulation of amplified spontaneous emission (ASE) thresholds, we find the drop in E-P interaction makes the decrease in ASE threshold from 17.69 μJ/cm2 to 17.62 μJ/cm2 and the ASE threshold is highly dependent on the exciton-exciton annihilation (EEA) process comparing to the non-radiative recombination induced via E-P interaction and the Auger recombination. This work contributes to the understanding of the transition process for the excitons in 2D PVSK as well as the relationship between E-P interaction, carrier dynamics, and ASE threshold.
[1] P. Pang, G. Jin, C. Liang, B. Wang, W. Xiang, D. Zhang, J. Xu, W. Hong, Z. Xiao, and L. Wang, "Rearranging low-dimensional phase distribution of quasi-2D perovskites for efficient sky-blue perovskite light-emitting diodes", ACS Nano 14 (9), 11420-11430 (2020).
[2] B. Dhanabalan, Y. C. Leng, G. Biffi, M. L. Lin, P. H. Tan, I. Infante, L. Manna, M. P. Arciniegas, and R. Krahne, "Directional Anisotropy of the Vibrational Modes in 2D-Layered Perovskites", ACS Nano 14 (4), 4689-4697 (2020).
[3] B. Cheng, T. Y. Li, P. Maity, P. C. Wei, D. Nordlund, K. T. Ho, D. H. Lien, C. H. Lin, R. Z. Liang, X. H. Miao, I. A. Ajia, J. Yin, D. Sokaras, A. Javey, I. S. Roqan, O. F. Mohammed, and J. H. He, "Extremely reduced dielectric confinement in two-dimensional hybrid perovskites with large polar organics", Communications Physics 1 (80), 1-8 (2018).
[4] H. L. Li, X. Y. Zhang, H. Z. Wang, J. H. Yu, K. X. Li, Z. P. Wei, D. H. Li, and R. Chen, "Optical characteristics of self-trapped excitons in 2D (iso-BA)2PbI4 perovskite crystals", Photonics Research 10 (2), 594-600 (2022).
[5] X. W. Gong, O. Voznyy, A. Jain, W. J. Liu, R. Sabatini, Z. Piontkowski, G. Walters, G. Bappi, S. Nokhrin, O. Bushuyev, M. J. Yuan, R. Comin, D. McCamant, S. O. Kelley, and E. H. Sargent, "Electron-phonon interaction in efficient perovskite blue emitters", Nature Materials 17 (6), 550-559 (2018).
[6] S. C. Wu, C. S. Wu, C. H. Chien, Y. W. Zhang, C. X. Yang, C. Liu, M. H. Li, C. F. Lin, Y. H. Wu, B. H. Lin, Y. H. Chou, Y. C. Chang, P. Chen, and H. C. Hsu, "Carrier–Phonon Interaction Induced Large Negative Thermal‐Optic Coefficient at Near Band Edge of Quasi‐2D (PEA)2PbBr4 Perovskite", Advanced Functional Materials 33 (25), 2213427 (2023).
[7] H. H. Fang, J. Yang, S. Adjokatse, E. Tekelenburg, M. E. Kamminga, H. Duim, J. Ye, G. R. Blake, J. Even, and M. A. Loi, "Band‐edge exciton fine structure and exciton recombination dynamics in single crystals of layered hybrid perovskites", Advanced Functional Materials 30 (6), 1907979 (2020).
[8] M. L. Lin, B. Dhanabalan, G. Biffi, Y. C. Leng, S. Kutkan, M. P. Arciniegas, P. H. Tan, and R. Krahne, "Correlating Symmetries of Low-Frequency Vibrations and Self-Trapped Excitons in Layered Perovskites for Light Emission with Different Colors", Small 18 (15), 2106759 (2022).
[9] Z. W. Xu, X. X. Jiang, H. P. Cai, K. Q. Chen, X. L. Yao, and Y. X. Feng, "Toward a General Understanding of Exciton Self-Trapping in Metal Halide Perovskites", Journal of Physical Chemistry Letters 12 (43), 10472-10478 (2021).
[10] W. Tao, Y. Zhang, and H. Zhu, "Dynamic exciton polaron in two-dimensional lead halide perovskites and implications for optoelectronic applications", Accounts of Chemical Research 55 (3), 345-353 (2022).
[11] R. T. Williams and K. S. Song, "THE SELF-TRAPPED EXCITON", Journal of Physics and Chemistry of Solids 51 (7), 679-716 (1990).
[12] Y. Wang, F. Song, Y. Yuan, J. Dang, X. Xie, S. Sun, S. Yan, Y. Hou, Z. Lou, and X. Xu, "Strong Triplet-Exciton-LO-Phonon Coupling in Two-Dimensional Layered Organic-Inorganic Hybrid Perovskite Single Crystal Microflakes", The Journal of Physical Chemistry Letters 12 (8), 2133-2141 (2021).
[13] L. Zhang, Y. Hao, Y. Wu, W. Qin, X. Liu, B. Cui, and S. Xie, "Self-trapping effect on the excitonic and polaronic properties of a single-layer 2D metal-halide perovskite", 2D Materials 7 (3), 035020 (2020).
[14] Z. G. Yu, "Optical deformation potential and self-trapped excitons in 2D hybrid perovskites", Physical Chemistry Chemical Physics 21 (40), 22293-22301 (2019).
[15] L. Zhang, L. Wu, K. Wang, and B. Zou, "Pressure‐Induced Broadband Emission of 2D Organic-Inorganic Hybrid Perovskite (C6H5C2H4NH3)2PbBr4", Advanced Science 6 (2), 1801628 (2019).
[16] A. R. Srimath Kandada and C. Silva, "Exciton polarons in two-dimensional hybrid metal-halide perovskites", The Journal of Physical Chemistry Letters 11 (9), 3173-3184 (2020).
[17] S. R. Rondiya, R. A. Jagt, J. L. MacManus-Driscoll, A. Walsh, and R. L. Hoye, "Self-trapping in bismuth-based semiconductors: Opportunities and challenges from optoelectronic devices to quantum technologies", Applied Physics Letters 119 (22), (2021).
[18] W. J. Tao, C. Zhang, Q. H. Zhou, Y. D. Zhao, and H. M. Zhu, "Momentarily trapped exciton polaron in two-dimensional lead halide perovskites", Nature Communications 12 (1), 1400 (2021).
[19] M. L. Liang, W. H. Lin, Q. Zhao, X. S. Zou, Z. Y. Lan, J. Meng, Q. Shi, I. E. Castelli, S. E. Canton, T. Pullerits, and K. B. Zheng, "Free Carriers versus Self-Trapped Excitons at Different Facets of Ruddlesden-Popper Two-Dimensional Lead Halide Perovskite Single Crystals", Journal of Physical Chemistry Letters 12 (20), 4965-4971 (2021).
[20] M. D. Smith, A. Jaffe, E. R. Dohner, A. M. Lindenberg, and H. I. Karunadasa, "Structural origins of broadband emission from layered Pb–Br hybrid perovskites", Chemical science 8 (6), 4497-4504 (2017).
[21] M. D. Smith and H. I. Karunadasa, "White-light emission from layered halide perovskites", Accounts of Chemical Research 51 (3), 619-627 (2018).
[22] T. Hu, M. D. Smith, E. R. Dohner, M.-J. Sher, X. Wu, M. T. Trinh, A. Fisher, J. Corbett, X.-Y. Zhu, and H. I. Karunadasa, "Mechanism for broadband white-light emission from two-dimensional (110) hybrid perovskites", The Journal of Physical Chemistry Letters 7 (12), 2258-2263 (2016).
[23] W. K. Chong, K. Thirumal, D. Giovanni, T. W. Goh, X. F. Liu, N. Mathews, S. Mhaisalkar, and T. C. Sum, "Dominant factors limiting the optical gain in layered two-dimensional halide perovskite thin films", Physical Chemistry Chemical Physics 18 (21), 14701-14708 (2016).
[24] Z. Guo, X. X. Wu, T. Zhu, X. Y. Zhu, and L. B. Huang, "Electron-Phonon Scattering in Atomically Thin 2D Perovskites", ACS Nano 10 (11), 9992-9998 (2016).
[25] W. Zhai, C. Ge, X. Fang, K. Zhang, C. Tian, K. Yuan, S. Sun, Y. Li, W. Chen, and G. Ran, "Acetone vapour-assisted growth of 2D single-crystalline organic lead halide perovskite microplates and their temperature-enhanced photoluminescence", RSC advances 8 (26), 14527-14531 (2018).
[26] Y. Liang, Q. Y. Shang, Q. Wei, L. Y. Zhao, Z. Liu, J. Shi, Y. G. Zhong, J. Chen, Y. Gao, M. L. Li, X. F. Liu, G. C. Xing, and Q. Zhang, "Lasing from Mechanically Exfoliated 2D Homologous Ruddlesden-Popper Perovskite Engineered by Inorganic Layer Thickness", Advanced Materials 31 (39), 1903030 (2019).
[27] Q. Du, C. Zhu, Z. X. Yin, G. R. Na, C. T. Cheng, Y. Han, N. Liu, X. X. Niu, H. P. Zhou, H. D. Chen, L. J. Zhang, S. Y. Jin, and Q. Chen, "Stacking Effects on Electron-Phonon Coupling in Layered Hybrid Perovskites via Microstrain Manipulation", ACS Nano 14 (5), 5806-5817 (2020).
[28] C.-S. Wu, S.-C. Wu, B.-T. Yang, Z. Y. Wu, Y. H. Chou, P. Chen, and H.-C. Hsu, "Hemispherical Cesium Lead Bromide Perovskite Single-Mode Microlasers with High-Quality Factors and Strong Purcell Enhancement", ACS Applied Materials & Interfaces 13 (11), 13556-13564 (2021).
[29] N. A. N. Ouedraogo, Y. Chen, Y. Y. Xiao, Q. Meng, C. B. Han, H. Yan, and Y. Zhang, "Stability of all-inorganic perovskite solar cells", Nano Energy 67, 104249 (2020).
[30] J. J. Zhao, Y. H. Deng, H. T. Wei, X. P. Zheng, Z. H. Yu, Y. C. Shao, J. E. Shield, and J. S. Huang, "Strained hybrid perovskite thin films and their impact on the intrinsic stability of perovskite solar cells", Science Advances 3 (11), eaao5616 (2017).
[31] J. Maes, L. Balcaen, E. Drijvers, Q. Zhao, J. De Roo, A. Vantomme, F. Vanhaecke, P. Geiregat, and Z. Hens, "Light absorption coefficient of CsPbBr3 perovskite nanocrystals", The journal of physical chemistry letters 9 (11), 3093-3097 (2018).
[32] C. Y. Zhao and C. J. Qin, "Quasi-2D lead halide perovskite gain materials toward electrical pumping laser", Nanophotonics 10 (8), 2167-2180 (2021).
[33] S. Dey, H. Cohen, I. Pinkas, H. Lin, M. Kazes, and D. Oron, "Band alignment and charge transfer in CsPbBr3–CdSe nanoplatelet hybrids coupled by molecular linkers", The Journal of Chemical Physics 151 (17), 174704 (2019).
[34] S. Wang, J. Q. Ma, W. C. Li, J. Wang, H. Z. Wang, H. Z. Shen, J. Z. Li, J. Q. Wang, H. M. Luo, and D. H. Li, "Temperature-Dependent Band Gap in Two-Dimensional Perovskites: Thermal Expansion Interaction and Electron-Phonon Interaction", Journal of Physical Chemistry Letters 10 (10), 2546-2553 (2019).
[35] G. R. Yettapu, D. Talukdar, S. Sarkar, A. Swarnkar, A. Nag, P. Ghosh, and P. Mandal, "Terahertz conductivity within colloidal CsPbBr3 perovskite nanocrystals: remarkably high carrier mobilities and large diffusion lengths", Nano letters 16 (8), 4838-4848 (2016).
[36] F. Staub, H. Hempel, J.-C. Hebig, J. Mock, U. W. Paetzold, U. Rau, T. Unold, and T. Kirchartz, "Beyond bulk lifetimes: insights into lead halide perovskite films from time-resolved photoluminescence", Physical review applied 6 (4), 044017 (2016).
[37] R. Guo, Z. A. Zhu, A. Boulesbaa, F. Hao, A. Puretzky, K. Xiao, J. M. Bao, Y. Yao, and W. Z. Li, "Synthesis and Photoluminescence Properties of 2D Phenethylammonium Lead Bromide Perovskite Nanocrystals", Small Methods 1 (10), 1700245 (2017).
[38] M. C. Weidman, M. Seitz, S. D. Stranks, and W. A. Tisdale, "Highly tunable colloidal perovskite nanoplatelets through variable cation, metal, and halide composition", ACS Nano 10 (8), 7830-7839 (2016).
[39] K. P. Bera, C. Hanmandlu, H.-I. Lin, R. Ghosh, V. K. Gudelli, C.-S. Lai, C.-W. Chu, and Y.-F. Chen, "Fabry–Perot Oscillation and Resonance Energy Transfer: Mechanism for Ultralow-Threshold Optically and Electrically Driven Random Laser in Quasi-2D Ruddlesden–Popper Perovskites", ACS Nano 17 (6), 5373-5386 (2023).
[40] K. Wang, J. Y. Park, Akriti, and L. T. Dou, "Two-dimensional halide perovskite quantum-well emitters: A critical review", Ecomat 3 (3), e12104 (2021).
[41] S. Kahmann, H. Duim, H. H. Fang, M. Dyksik, S. Adjokatse, M. R. Medina, M. Pitaro, P. Plochocka, and M. A. Loi, "Photophysics of Two-Dimensional Perovskites-Learning from Metal Halide Substitution", Advanced Functional Materials 31 (46), 2103778 (2021).
[42] H. Zhang, Y. Hu, W. Wen, B. Du, L. Wu, Y. Chen, S. Feng, C. Zou, J. Shang, and H. J. Fan, "Room-temperature continuous-wave vertical-cavity surface-emitting lasers based on 2D layered organic–inorganic hybrid perovskites", APL Materials 9 (7), 071106 (2021).
[43] J.-C. Blancon, A. V. Stier, H. Tsai, W. Nie, C. C. Stoumpos, B. Traore, L. Pedesseau, M. Kepenekian, F. Katsutani, and G. Noe, "Scaling law for excitons in 2D perovskite quantum wells", Nature communications 9 (1), 2254 (2018).
[44] D. Liang, Y. L. Peng, Y. P. Fu, M. J. Shearer, J. J. Zhang, J. Y. Zhai, Y. Zhang, R. J. Hamers, T. L. Andrew, and S. Jin, "Color-Pure Violet-Light-Emitting Diodes Based on Layered Lead Halide Perovskite Nanoplates", ACS Nano 10 (7), 6897-6904 (2016).
[45] A. L. Alvarado-Leanos, D. Cortecchia, C. N. Saggau, S. Martani, G. Folpini, E. Feltri, M. D. Albaqami, L. Ma, and A. Petrozza, "Lasing in two-dimensional tin perovskites", ACS Nano 16 (12), 20671-20679 (2022).
[46] E. P. Booker, M. B. Price, P. J. Budden, H. Abolins, Y. del Valle‐Inclan Redondo, L. Eyre, I. Nasrallah, R. T. Phillips, R. H. Friend, and F. Deschler, "Vertical cavity biexciton lasing in 2D dodecylammonium lead iodide perovskites", Advanced Optical Materials 6 (21), 1800616 (2018).
[47] A. Maiti, K. Agarwal, S. Gonzalez-Munoz, and O. V. Kolosov, "Quantifying anisotropic thermal transport in two-dimensional perovskite (PEA2PbI4) through cross-sectional scanning thermal microscopy", Physical Review Materials 7 (2), 023801 (2023).
[48] W. Zhai, C. Tian, K. Yuan, C. Ge, S. Zhao, H. Yu, Y. Li, W. Chen, and G. Ran, "Optically pumped lasing of segregated quasi-2D perovskite microcrystals in vertical microcavity at room temperature", Applied Physics Letters 114 (13), 131107 (2019).
[49] Z. Chu, T. Guo, S. Zhao, H. Chen, Y. Li, W. Xu, and G. Ran, "Quasi 2D perovskite single-mode vertical-cavity lasers through large-area film transfer", Applied Physics Letters 120 (12), 121104 (2022).
[50] B. H. Bohn, Exciton Dynamics in Lead Halide Perovskite Nanocrystals (Springer, 2021), pp.1-5.
[51] M. Fox, Optical Properties of Solids (Oxford University, 2010), pp.95-112.
[52] A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. Li, B. Aslan, D. R. Reichman, M. S. Hybertsen, and T. F. Heinz, "Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2", Physical review letters 113 (7), 076802 (2014).
[53] B. H. Bohn, Exciton Dynamics in Lead Halide Perovskite Nanocrystals (Springer, 2021), pp.6-65.
[54] M. Fox, Optical Properties of Solids (Oxford University, 2010), pp.271-294.
[55] S. R. Li, J. J. Luo, J. Liu, and J. Tang, "Self-Trapped Excitons in All-Inorganic Halide Perovskites: Fundamentals, Status, and Potential Applications", Journal of Physical Chemistry Letters 10 (8), 1999-2007 (2019).
[56] M. Fox, Optical Properties of Solids (Oxford University, 2010), pp.1-27.
[57] S. D. Stranks, V. M. Burlakov, T. Leijtens, J. M. Ball, A. Goriely, and H. J. Snaith, "Recombination Kinetics in Organic-Inorganic Perovskites: Excitons, Free Charge, and Subgap States", Physical Review Applied 2 (3), 034007 (2014).
[58] A. Kiligaridis, P. A. Frantsuzov, A. Yangui, S. Seth, J. Li, Q. An, Y. Vaynzof, and I. G. Scheblykin, "Are Shockley-Read-Hall and ABC models valid for lead halide perovskites?", Nature communications 12 (1), 3329 (2021).
[59] W. Shockley and W. Read Jr, "Statistics of the recombinations of holes and electrons", Physical Review 87 (5), 835 (1952).
[60] R. N. Hall, "Electron-hole recombination in germanium", Physical Review 87 (2), 387 (1952).
[61] J. Chmeliov, J. Narkeliunas, M. W. Graham, G. R. Fleming, and L. Valkunas, "Exciton–exciton annihilation and relaxation pathways in semiconducting carbon nanotubes", Nanoscale 8 (3), 1618-1626 (2016).
[62] T. Numai, Fundamentals of Semiconductor Lasers (Springer, 2015), pp.23-40.
[63] B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 2019), pp.561-618.
[64] J. Qin, X.-K. Liu, C. Yin, and F. Gao, "Carrier dynamics and evaluation of lasing actions in halide perovskites", Trends in Chemistry 3 (1), 34-46 (2021).
[65] M. Dresselhaus, G. Dresselhaus, S. Cronin, and A. G. S. Filho, Solid State Properties (Springer, 2018), pp.345-389.
[66] S. H. Simon, The Oxford Solid State Basics (Oxford University, 2013), pp.141-160.
[67] W. Becker, Advanced Time-Correlated Single Photon Counting Techniques (Springer, 2005), pp.11-24.
[68] S. Parola, M. Daanoune, A. Focsa, B. Semmache, E. Picard, A. Kaminski-Cachopo, M. Lemiti, and D. Blanc-Pélissier, "Study of photoluminescence decay by time-correlated single photon counting for the determination of the minority-carrier lifetime in silicon", Energy Procedia 55, 121-127 (2014).
[69] J. Di, H. Li, L. Chen, S. Zhang, Y. Hu, K. Sun, B. Peng, J. Su, X. Zhao, and Y. Fan, "Low trap density para-F substituted 2D PEA2PbX4 (X= Cl, Br, I) single crystals with tunable optoelectrical properties and high sensitive X-ray detector performance", Research 2022, 9768019 (2022).
[70] S. Neutzner, F. Thouin, D. Cortecchia, A. Petrozza, C. Silva, and A. R. S. Kandada, "Exciton-polaron spectral structures in two-dimensional hybrid lead-halide perovskites", Physical Review Materials 2 (6), 064605 (2018).
[71] R. Elliott, "Intensity of optical absorption by excitons", Physical Review 108 (6), 1384 (1957).
[72] T. Zhang, C. Zhou, X. Feng, N. Dong, H. Chen, X. Chen, L. Zhang, J. Lin, and J. Wang, "Regulation of the luminescence mechanism of two-dimensional tin halide perovskites", Nature communications 13 (1), 60 (2022).
[73] M. Xia, Z. Xie, H. Wang, T. Jin, L. Liu, J. Kang, Z. Sang, X. Yan, B. Wu, and H. Hu, "Sub‐Nanosecond 2D Perovskite Scintillators by Dielectric Engineering", Advanced Materials 35 (18), 2211769 (2023).
[74] Y. Jiang, M. Cui, S. Li, C. Sun, Y. Huang, J. Wei, L. Zhang, M. Lv, C. Qin, and Y. Liu, "Reducing the impact of Auger recombination in quasi-2D perovskite light-emitting diodes", Nature communications 12 (1), 336 (2021).
[75] T. Furuhashi, A. Kanwat, S. Ramesh, N. Mathews, and T. C. Sum, "Unveiling the Impact of Organic Spacer Cations on Auger Recombination in Layered Halide Perovskites", Advanced Optical Materials 12 (8), 2301230 (2024).
[76] W.-T. Hsu, J. Quan, C.-Y. Wang, L.-S. Lu, M. Campbell, W.-H. Chang, L.-J. Li, X. Li, and C.-K. Shih, "Dielectric impact on exciton binding energy and quasiparticle bandgap in monolayer WS2 and WSe2", 2D Materials 6 (2), 025028 (2019).
[77] E. Jung, J. C. Park, Y.-S. Seo, J.-H. Kim, J. Hwang, and Y. H. Lee, "Unusually large exciton binding energy in multilayered 2H-MoTe2", Scientific Reports 12 (1), 4543 (2022).
[78] H. Wang, W. Wei, F. Li, B. Huang, and Y. Dai, "Step-like band alignment and stacking-dependent band splitting in trilayer TMD heterostructures", Physical Chemistry Chemical Physics 20 (38), 25000-25008 (2018).
[79] W.-H. Li, J.-D. Lin, P.-Y. Lo, G.-H. Peng, C.-Y. Hei, S.-Y. Chen, and S.-J. Cheng, "The key role of non-local screening in the environment-insensitive exciton fine structures of transition-metal dichalcogenide monolayers", Nanomaterials 13 (11), 1739 (2023).
[80] X. X. Wu, M. T. Trinh, D. Niesner, H. M. Zhu, Z. Norman, J. S. Owen, O. Yaffe, B. J. Kudisch, and X. Y. Zhu, "Trap States in Lead Iodide Perovskites", Journal of the American Chemical Society 137 (5), 2089-2096 (2015).
[81] N. M. A. Kumar, S. Mukherjee, A. Sunny, B. Karthikeyan, and N. Kamaraju, "Investigation of self-trapped excitonic dynamics in hematite nanoforms through non-degenerate pump-probe transmission spectroscopy", Applied Physics Letters 121 (20), 202102 (2022).
[82] C. Spindler, T. Galvani, L. Wirtz, G. Rey, and S. Siebentritt, "Excitation-intensity dependence of shallow and deep-level photoluminescence transitions in semiconductors", Journal of Applied Physics 126 (17), 175703 (2019).
[83] J. Ramade, L. M. Andriambariarijaona, V. Steinmetz, N. Goubet, L. Legrand, T. Barisien, F. Bernardot, C. Testelin, E. Lhuillier, A. Bramati, and M. Chamarro, "Exciton-phonon coupling in a CsPbBr3 single nanocrystal", Applied Physics Letters 112 (7), 072104 (2018).
[84] S. Rudin, T. Reinecke, and B. Segall, "Temperature-dependent exciton linewidths in semiconductors", Physical Review B 42 (17), 11218 (1990).
[85] Q. Cheng, B. Wang, G. Huang, Y. Li, X. Li, J. Chen, S. Yue, K. Li, H. Zhang, and Y. Zhang, "Impact of Strain Relaxation on 2D Ruddlesden–Popper Perovskite Solar Cells", Angewandte Chemie International Edition 61 (36), e202208264 (2022).
[86] X. He, H. Gong, H. Huang, Y. Li, J. Ren, Y. Li, Q. Liao, T. Gao, and H. Fu, "Multicolor biexciton lasers based on 2D perovskite single crystalline flakes", Advanced Optical Materials 10 (15), 2200238 (2022).
[87] Y. Li, H. Zhou, M. Xia, H. Shen, T. Wang, H. Gao, X. Sheng, Y. Han, Z. Chen, and L. Dou, "Phase-pure 2D tin halide perovskite thin flakes for stable lasing", Science Advances 9 (32), eadh0517 (2023).
[88] P. K. Roy, R. K. Ulaganathan, C. M. Raghavan, S. M. Mhatre, H. I. Lin, W. L. Chen, Y. M. Chang, A. Rozhin, Y. T. Hsu, Y. F. Chen, R. Sankar, F. C. Chou, and C. T. Liang, "Unprecedented random lasing in 2D organolead halide single-crystalline perovskite microrods", Nanoscale 12 (35), 18269-18277 (2020).
[89] L. Lei, D. Seyitliyev, S. Stuard, J. Mendes, Q. Dong, X. Fu, Y. A. Chen, S. He, X. Yi, and L. Zhu, "Efficient energy funneling in quasi‐2D perovskites: from light emission to lasing", Advanced Materials 32 (16), 1906571 (2020).
[90] M. Li, Q. Gao, P. Liu, Q. Liao, H. Zhang, J. Yao, W. Hu, Y. Wu, and H. Fu, "Amplified spontaneous emission based on 2D Ruddlesden–Popper perovskites", Advanced Functional Materials 28 (17), 1707006 (2018).
[91] Z. Ren, J. Yu, Z. Qin, J. Wang, J. Sun, C. C. Chan, S. Ding, K. Wang, R. Chen, and K. S. Wong, "High‐performance blue perovskite light‐emitting diodes enabled by efficient energy transfer between coupled quasi‐2D perovskite layers", Advanced Materials 33 (1), 2005570 (2021).