| 研究生: |
陳韻安 Chen, Yun-An |
|---|---|
| 論文名稱: |
汞逆境之基因表現及蛋白質之研究 Molecular Studies on Gene Expression and proteomic in Mercury (Hg) - Stress Response |
| 指導教授: |
黃浩仁
Huang, Hao-Jen |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
生物科學與科技學院 - 生命科學系 Department of Life Sciences |
| 論文出版年: | 2013 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 157 |
| 中文關鍵詞: | 汞 、氧化壓力 、抗氧化酶 、基因組 、去氧核醣核苷酸晶片 |
| 外文關鍵詞: | Mercury, Oxidative stress, Antioxidative enzymes, genomic, DNA array. |
| 相關次數: | 點閱:77 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
汞已經成為農業用地中導致污染的重要有毒重金屬污染源之ㄧ,汞的累積在植物中會從許多分子的層面干擾其功能進而抑制植物的生長及發育,但其機轉目前尚未釐清。本研究主要探討汞逆境下,水稻根部其分子、生化及蛋白質體的變化。在根部汞濃度逐漸增加的情形下,根的生長素率下降,但活性含氧物(ROS)、丙二醛(MDA)的含量以及脂氧合酶(lipoxygenase)的活性卻顯著增加。研究發現在汞逆境下,植物根尖部位的榖胱苷肽(glutathione)總含量、超氧化物歧化酶(SOD)、植物抗壞血酸過氧化物酶(APX)、過氧化氫酶(CAT)以及過氧化酶(POD)的活性會隨時間而有變化,二維電泳法顯示出以汞處理根尖後共有25個不同蛋白質的表現,其中14個蛋白質的點顯示為正調控而11個蛋白質的點顯示為負調控,以ESI-MS/MS法鑑定出的這些不同的表現蛋白參與包含氧化還原作用、賀爾蒙的恒定、chaperone活性、代謝及轉錄作用的調節等的分子功能。本研究結果可以提供對植物在汞逆境下分子基礎反應的新觀點。此外,本研究亦完成水稻transcriptome在短時間暴露於汞逆境下的大量分析,包含細胞壁形成、化學性的去毒性作用、次級代謝、訊息傳遞以及生命性的逆境基因反應。在汞處理過的水稻根部其基因表現的資料顯示出訊息的正調節、ethylene的生合成以及生物素的去活化作用。此外,汞逆境也會產生誘發鈣的累積以及活化有絲分裂原激活蛋白質的激酶的現象。這些現象回應汞逆境所產生的相關基因改變並進一步的幫助我們了解在水稻於汞逆境下的分子機轉。
Mercury (Hg) has become one of the major causes of toxic metal pollution in agricultural lands. Accumulation of mercury (Hg) in plants disrupts many cellular-level functions and inhibits growth and development, but the mechanism is not fully understood. We investigated cellular, biochemical and proteomic changes in rice roots under Hg stress. Root growth rate was decreased and Hg, reactive oxygen species (ROS), and malondialdehyde (MDA) content and lipoxygenase activity were increased significantly with increasing Hg concentration in roots. Our research showed a time-dependent alteration in total glutathione content and enzymatic activity of superoxide dismutase (SOD), ascorbate peroxides (APX), catalase (CAT) and peroxidase (POD) during Hg stress. 2-D electrophoresis revealed differential expression of 25 spots with Hg treatment of roots: 14 spots were up-regulated and 11 spots down-regulated. These differentially expressed proteins were identified by ESI-MS/MS to be involved in cellular functions including redox and hormone homeostasis, chaperone activity, metabolism, and transcription regulation. These results may provide new insights into the molecular basis of the Hg stress response in plants. We also performed a large-scale analysis of the rice transcriptome during Hg stress. Genes induced with short-term exposure represented functional categories of cell-wall formation, chemical detoxification, secondary metabolism, signal transduction and abiotic stress response. Gene expression profiling indicated upregulation of signaling and biosynthesis of ethylene and inactivation of cytokinins in Hg-treated rice roots. In addition, Hg induced calcium accumulation and activated mitogen-activated protein kinase. Further characterization of the identified Hg-responsive genes may be helpful for a better understanding of the mechanisms of Hg in plants.
References
Ahsan N, Lee DG, Lee SH, Kang KY, Lee JJ, Kim PJ, Yoon HS, Kim JS, Lee BH (2007) Excess copper induced physiological and proteomic changes in germinating rice seeds. Chemosphere 67:1182-1193.
Agarwal PK, Agarwal P, Reddy MK, Sopory SK. (2006) Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep.25:1263-1274.
Agarwal PK, Gupta K, Jha B, (2010) Molecular characterization of the Salicornia brachiata SbMAPKK gene and its expression by abiotic stress. Mol Biol Rep. 37:981-986.
Anderson JV, Chevone BI, Hess JL, (1992) Seasonal variation in the antioxidant system of eastern white pine needles: evidence for thermal dependence. Plant Physiol 98:501-508
Ansaria MKA, Ahmad A, Umara S, Iqbala M, (2009) Mercury-induced changes in growth variables and antioxidative enzyme activities in Indian mustard. J Plant Int 4: 131-136
Beauford W, Barber J, Barringer AR, (1977) Uptake and distribution of mercury within higher plants. Physiol Plant 39: 261-265.
Becraft PW, (2002) Receptor kinase signaling in plant development. Annu Rev Cell Dev Biol. 18: 163-192.
Bohm PAF, Zanardo FML, Ferrarese MLL, Ferrarese-Filho O, (2006) Peroxidase activity and lignification in soybean root growth-inhibition by juglone. Biol. Plant 50:315-317.
Bogatek R, Gniazdowska A, (2007) ROS and Phytohormones in Plant-Plant Allelopathic Interaction. Plant Signal Behav 2:317–318. Sonia Campo1
Campol S, Carrascal M, Cocal M, Abian J, San Segundo B (2004) The defense response of germinating maize embryos against fungal infection: a proteomics approach. Proteomics 4: 383-396
Cargnelutti D, Tabaldi LA, Spanevello RM, de Oliveira Jucoski G, Battisti V, Redin M, Linares CE, Dressler VL, de Moraes Flores EM, Nicoloso FT, Morsch VM, Schetinger MR (2006) Mercury toxicity induces oxidative stress in growing cucumber seedlings. Chemosphere 65: 999-1006
Chaney RL, Malik M, Li YM, Brown SL, Angle JS, Baker AJM (1997) Phytoremediation of soil metals. Current Opinions in Biotechnology 8: 279–284.
Chen CC, Chen YY, Tang IC, Liang HM, Lai CC, Chiou JM, Yeh KC (2011) Arabidopsis SUMO E3 ligase SIZ1 is involved in excess copper tolerance. Plant Physiol 156: 2225-2234
Chen L, Song Y, Li S, Zhang L, Zou C, Yu D (2012) The role of WRKY transcription factors in plant abiotic stresses. Biochim Biophys Acta 1819:120-128.
Chen YA, Shin JW, Liu ZH (2002) Effect of light on peroxidase and lignin synthesis in mungbean hypocotyls. Plant Physiol Biochem 40, 33-39
Chen YA, Chi WC, Huang T L, Lin CY, Quynh Nguyeh TT, Hsiung YC, Chia LC, Huang HJ (2012) Mercury-induced biochemical and proteomic changes in rice roots. Plant Physiol Biochem 55: 23-32.
Chi WC, Fu SF, Huang TL, Chen YA, Chen CC, Huang HJ, (2011) Identification of transcriptome profiles and signaling pathways for the allelochemical juglone in rice roots. Plant Mol Biol 77: 591-607.
Christensen JH, Bauw G, Welinder KG, Van Montagu M, Boerjan W(1998) Purification and characterization of peroxidases correlated with lignification in poplar xylem. Plant Physiol 118: 125-135.
Chinnusamy V, Zhu JK (2009) Epigenetic regulation of stress responses in plants. Curr Opin Plant Biol 12: 133–139
Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88: 1707-1719
Cobbett CS (2000) Phytochelatins and their roles in heavy metal detoxification. Plant Physiol 123: 825-832.
Cooper CM, Gillespie WB(2001) Arsenic and mercury concentrations in major landscape components of an intensively cultivated watershed. Environ. Pollut 111: 67–74.
Cosgrove D J (1997) Relaxation in a high-stress environment: the molecular bases of extensible cell walls and cell enlargement. Plant Cell 9:1031-1041.
Dooki AD, Mayer-Posner FJ, Askari H, Zaiee AA, Salekdeh GH (2006) Proteomic responses of rice young panicles to salinity. Proteomics 6: 6498-6507.
Du X, Zhu Y, Liu W, Zhao X (2005) Uptake of mercury (Hg) by seedlings of rice (Oryza sativa L.) grown in solution culture and interactions with arsenate uptake. Environ Exp Bot 54:1-7.
Du Z, Zhou X, Ling Y, Zhang Z, Su Z, (2010) AgriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Res 38: W64-W70.
Durand TC, Sergeant K, Planchon S, Carpin S, Label P, Morabito D, Hausman JF, Renaut J (2010) Acute metal stress in Populus tremula P. alba (717-1B4 genotype): Leaf and cambial proteome changes induced by cadmium. Proteomics 10: 349-368
Fu SF, Chou WC, Huang DD, Huang HJ, (2002) Transcriptional regulation of a rice mitogen-activated protein kinase gene, OsMAPK4, in response to environmental stresses. Plant Cell Physiol 43: 958-963.
Feussner K, Feussner I, Leopold I, Wasternack C (1997) Isolation of a cDNA coding for an ubiquitin-conjugating enzyme UBC1 of tomato--the first stress-induced UBC of higher plants. FEBS Lett 409: 211-215
Fukuda T, Saito A, Wasaki J, Shinano T, Osaki M (2007) Metabolic alterations proposed by proteome in rice roots grown under low P and high Al concentration under low pH. Plant Sci 172: 1157-1165
Gao S, Yan R, Cao M, Yang W, Wang S, Chen F (2008) Effects of copper on growth, antioxidant enzymes and phenylalanine ammonialyase activities in Jatropha curcas L. seedling. Plant Soil Environ 54: 117-122
Gao LL, Xue HW (2011) Global analysis of expression profiles of rice receptor-347 like kinase genes. Mol Plant 5:143-153.
Germain H, Gray-Mitsumune M, Lafleur E, Matton DP (2008) ScORK17, a transmembrane receptor-like kinase predominantly expressed in ovules is involved in seed development. Planta 228: 851-862.
Gharahdaghi F, Weinberg CR, Meagher DA, Imai BS, Mische, SM (1999) Mass spectrometric identification of proteins from silver-stained polyacrylamide gel: a method for the removal of silver ions to enhance sensitivity. Electrophoresis 20: 601-605
Gorg A, Postel W, Domscheit A, Gunther S (1988) Two dimensional electrophoresis with immobilized pH gradients of leaf proteins from barley (Hordeum vulgare): Method, reproducibility and genetic aspects. Electrophoresis 9: 681-692
Harper JF, Breton G, Harmon A (2004) Decoding Ca2+ signals through plant protein kinases. Annu Rev Plant Biol. 55: 263-288.
Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125: 189-198.
Hernandez M, Fernandez-Garcia N, Diaz-Vivancos P, Olmos E (2010) A different role for hydrogen peroxide and the antioxidative system under short and long salt stress in Brassica oleracea roots. J Exp Bot 61: 521-535.
Ishihama N, Yamada R, Yoshioka M, Katou S, Yoshioka H (2011) Phosphorylation of the Nicotiana benthamiana WRKY8 transcription factor by MAPK functions in the defense response. Plant Cell 23 : 1153-1170.
Katiyar-Agarwal S, Agarwal M, Grover A (2003) Heat-tolerant basmati rice engineered by over-expression of hsp101. Plant Mol Biol. 51: 677-686.
Kieffer P, Dommes J, Hoffmann L, Hausman JF, Renaut J (2008) Quantitative changes in protein expression of cadmium exposed poplar plants. Proteomics 8: 2514-2530
Kim JA, Agrawal GK, Rakwal R, Han KS, Kim KN, Yun CH, Heu S, Park SY, Lee YH, Jwa NS (2003) Molecular cloning and mRNA expressionanalysis of a novel rice (Oryza sativa L.) MAPK kinase kinase, OsEDR1, an ortholog of Arabidopsis AtEDR1, reveal its role in defense/stress signaling pathways and development. Biochem Biophys Res Commun. 300:868-876.
Kosova K, Vitamvas P, Prasil IT, Renaut J (2011) Plant proteome changes under abiotic stress-contribution of proteomics studies to understanding plant stress response. J Proteomics 74: 1301-1322
Lee DG, Ahsan N, Lee SH, Lee JJ, Bahk JD, Kang KY, Lee BH (2009) Chilling stress-induced proteomic changes in rice roots. J Plant Physiol 166: 1-11
Lehti-Shiu MD, Zou C, Hanada K, Shiu SH (2009) Evolutionary history and stress regulation of plant receptor-like kinase/pelle genes. Plant Physiol. 150: 12-26.
Liao M, Li Y, Wang Z (2009) Identification of elicitor responsive proteins in rice leaves by a proteomic approach. Proteomics 9: 2809-2819
Lin TC, Yang CR, Chang FH (2007) Burning characteristics and emission products related to metallic content in incense. J Hazard Mater 140: 165-172.
Lin CM, Koh S, Stacey G, Yu SM, Lin TY, Tsay YF (2000) Cloning and functional characterization of a constitutively expressed nitrate transporter gene, OsNRT1, from rice. Plant Physiol. 122: 379-388.
Lucena JJ, Herna´ndez LE, Olmos S, Carpena-Ruiz RO (1993) Micronutrient content in graminaceous and leguminous plants contaminated with mercury. In: Fregoso, van Beusichem (Eds.), Optimization of Plant Nutrition. Kluwer Acad. Publishers, Dordrecht, The Netherlands, pp. 531–537.
Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys. 444: 139-158.
Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S (2002) The protein kinase complement of the human genome. Science 298: 1912-1934.
Massot N, Nicander B, Barceló J, Poschenrieder C, Tillberg E (2002) A rapid increase in cytokinin levels and enhanced ethylene evolution precede Al3+-induced inhibition of root growth in bean seedlings (Phaseolus vulgaris L.). Plant Growth Regul. 37: 105-112.
Mazzucotelli E, Belloni S, Marone D, De Leonardis A, Guerra D, Di Fonzo N, Cattivelli L, Mastrangelo A (2006) The E3 ubiquitin ligase gene family in plants: regulation by degradation. Curr Genomics 7: 509-522
Mittler R, Zilinskas BA (1993) Detection of ascorbate peroxidase activity in native gels by inhibition of the ascorbate-dependent reduction of nitroblue tetrazolium. Anal Biochem 212: 540-546
Moffatt BA, Stevens YY, Allen MS, Snider JD, Pereira LA, Todorova MI, Summers PS, Weretilnyk EA, Martin-McCaffrey L, Wagner C (2002) Adenosine kinase deficiency is associated with developmental abnormalities and reduced transmethylation. Plant Physiol 128: 812-821
Nwugo CC, Huerta AJ (2011) The effect of silicon on the leaf proteome of rice (Oryza sativa L.) plants under cadmium-stress. J Proteome Res10: 518-528
Ouariti O, Boussama N, Zarrouk M, Cherif A, Ghorbal MH (1997) Cadmium and copper induced changes in tomato membrane lipids. Phytochemistry 45: 1343-1350
Patra M, Sharma A (2000) Mercury toxicity in plants. Bot. Rev. 66: 379–422.
Potters G, Pasternak TP, Guisez Y, Palme KJ, Jansen MA (2007) Stress-induced morphogenic responses: growing out of trouble? Trends Plant Sci. 379 12: 98-105.
Rea P. A (1999) MRP subfamily ABC transporters from plants and yeast. J Exp Bot.50: 895-913.
Remans T, Opdenakker K, Smeets K, Mathijsen D, Vangronsveld J, Cuypers A (2010) Metal-specific and NADPH oxidase dependent changes in lipoxygenase and NADPH oxidase gene expression in Arabidopsis thaliana exposed to cadmium or excess copper. Funct Plant Biol 37: 532-544
Rodriguez MC, Petersen M, Mundy J (2010) Mitogen-activated protein kinase signaling in plants. Annu Rev Plant Biol. 61: 621-649.
Shadle G, Chen F, Srinivasa Reddy MS, Jackson L, Nakashima J, Dixon RA (2007) Down-regulation of hydroxycinnamoyl CoA: shikimate hydroxycinnamoyl transferase in transgenic alfalfa affects lignification, development and forage quality. Phytochemistry 68: 1521-1529
Skórzyńska-Polit E, Pawlikowska-Pawlęga B, Szczuka E, Drążkiewicz M, Krupa Z (2006) The activity and localization of lipoxygenases in Arabidopsis thaliana under cadmium and copper stresses. Plant Growth Regul 48: 29-39
Song JL, Wang CC (1995) Chaperone like activity of protein disulfide isomerase in the refolding of rhodanese. Eur J Biochem 231: 312-316
Song W, Koh S, Czako M, Marton L, Drenkard E, Becker JM, Stacey G (1997) Antisense expression of the peptide transport gene AtPTR2-B delays flowering and arrests seed development in transgenic Arabidopsis plants. Plant Physiol. 114: 927-35.
Thimm O, Bläsing O, Gibon Y, Nagel A, Meyer S, Krüger P, Selbig J, Müller LA, Rhee SY, Stitt M (2004) MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J. 37; 914-939.
Timperio A, Egidi M, Zolla L (2008) Proteomics applied on plant abiotic stresses: role of heat shock proteins (HSP). J Proteomics 71: 391-411
Torres MA, Onouchi H, Hamada S, Machida C, Hammond-Kosack KE, Jones JDG (1998) Six Arabidopsis thaliana homologues of the human respiratory burst oxidase (gp91-phox). Plant J. 14:365-373.
Tsay YF, Schroeder JI, Feldmann KA, Crawford NM (1993) The herbicide sensitivity gene CHL1 of Arabidopsis encodes a nitrate-inducible nitrate transporter. Cell 72: 705-713.
Usadel B, Nagel A, Thimm O, Redestig H, Blaesing OE, Palacios-Rojas N, Selbig J, Hannemann J, Piques MC, Steinhauser D, Scheible WR, Gibon Y, Morcuende R, Weicht D, Meyer S, Stitt M. (2005) Extension of the visualization tool MapMan to allow statistical analysis of arrays, display of corresponding genes, and comparison with known responses. Plant Physiol. 138: 1195-1204.
Vranová E, Langebartels C, Van Montagu M, Inzé D, Van Camp W(2000) Oxidative stress, heat shock and drought differentially affect expression of a tobacco protein phosphatase 2C. Journal of Experimental Botany51:1763–1764
Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9: 244-252
Wang YS, Yang ZM (2005) Nitric oxide reduces aluminum toxicity by preventing oxidative stress in the roots of Cassia tora L. Plant Cell Physiol 46: 1915-1923
Walker JM (2002) The Protein Protocols Handbook, Humana Press, Totowa.
Werner T (2008) Bioinformatics applications for pathway analysis of microarray data. Curr Opin Biotechnol. 19: 50-54.
Xue-Franzen Y, Johnsson A, Brodin D, Henriksson J, Burglin TR, Wright AP (2010) Genome-wide characterisation of the Gcn5 histone acetyltransferase in budding yeast during stress adaptation reveals evolutionarily conserved and diverged roles. BMC genomics 11: 200-216
Yan SP, Zhang QY, Tang ZC, Su WA, Sun WN (2006) Comparative proteomic analysis provides new insights into chilling stress responses in rice. Mol Cell Proteomics 5: 484-496
Yeh CM, Chien PS, Huang HJ (2007) Distinct signalling pathways for induction of MAP kinase activities by cadmium and copper in rice roots. J Exp Bot. 58: 659-671.
Yokotani N, Ichikawa T, Kondou Y, Matsui M, Hirochika H, Iwabuchi M, Oda K (2008) Expression of rice heat stress transcription factor OsHsfA2e enhances tolerance to environmental stresses in transgenic Arabidopsis. Planta 227: 957-967.
Zabihi M, Haghighi Asl A, Ahmadpour A (2010) Studies on adsorption of mercury from aqueous solution on activated carbons prepared from walnut shell. J Hazard Mater. 174: 251-256.
Zhou ZS, Huang SQ, Guo K, Mehta SK, Zhang PC, Yang ZM (2007) Metabolic adaptations to mercury-induced oxidative stress in roots of Medicago sativa L. J Inorganic Biochem 101: 1-9
Zhuang X, Jiang J, Li J, Ma Q, Xu Y, Xue Y, Xu Z, Chong K (2006) Over-expression of OsAGAP, an ARF-GAP, interferes with auxin influx, vesicle trafficking and root development. Plant J 48: 581-591
Zou J, Liu A, Chen X, Zhou X, Gao G, Wang W, Zhang X (2009) Expression analysis of nine rice heat shock protein genes under abiotic stresses and ABA treatment. J Plant Physiol 166: 851-861
Zrenner R, Stitt M, Sonnewald U, Boldt R (2006) Pyrimidine and purine biosynthesis and degradation in plants. Annu Rev Plant Biol 57: 805-836