| 研究生: |
高俊偉 Kao, Chun-wei |
|---|---|
| 論文名稱: |
牛流行熱病毒外套膜醣蛋白G基因DNA疫苗之改進:結合趨化素CCL5基因之影響 Improvement of DNA vaccine of bovine ephemeral fever viral glycoprotein G gene: effect of the combination with the chemokine CCL5 gene |
| 指導教授: |
陳世輝
Chen, Shih-hui 謝耀清 Hsieh, Yao-Ching |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生命科學系 Department of Life Sciences |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 98 |
| 中文關鍵詞: | 牛流行熱病毒 、DNA疫苗 、趨化素 |
| 外文關鍵詞: | NES, chemokine, DNA vaccine, BEFV, CCL5, Bovine ephemeral fever virus |
| 相關次數: | 點閱:161 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
牛流行熱病毒(bovine ephemeral fever virus, BEFV)為子彈型病毒科(rhabdoviridae),具有外套膜之負股RNA病毒,牛流行熱主要影響到畜牧業,會感染乳牛、水牛、黃牛、造成急性發熱、泌乳量下降、死亡等危害,現在主要使用的疫苗乃民國73年所分離之病毒株經福馬林不活化後,加入氫氧化鋁膠作為佐劑所製成不活化疫苗,保護力仍不理想。而本實驗室則相繼投入牛流行熱DNA疫苗的研發與改良,前後利用了針對牛流行熱外套膜醣蛋白G基因,搭配細胞激素IL-2或GM-CSF基因,或是改良G基因本身結構,融合在細胞間具移動能力之VP22基因,或給予CpG佐劑等製備DNA疫苗,雖然有較好的免疫效力產生,然中和抗體效價仍不夠理想,仍須改進之。
本研究擬結合趨化素CCL5基因,利用其趨化免疫細胞的能力,增加G基因疫苗抗原呈現的機會,增強DNA疫苗的效力。首先完成CCL5基因之選殖並構築於表現載體,藉由轉染細胞的觀察可以證明於第12個小時即開始表現,當與G基因載體共同轉染細胞時,搭配pCCL5的組別能有較好的G基因表現量,可是對於病毒感染細胞所造成的G基因表現量則無影響,顯示CCL5在DNA疫苗方面可以促進G基因載體的表現,但對於病毒複製時G基因表現無影響。此外以前探討VP22作用時,其載體有融合NES序列,故本研究另行構築了NES的表現載體,探討其作用。將上述各重組載體預先轉染BHK-21細胞,再感染病毒測其病毒效價,結果發現預先轉染pBEFV-G、pCCL5、pVP22/NES、pNES、mock,各組病毒效價(TCID50)依序各為10-4.78、10-5.48、10-5、10-5.52、10-5.14 對照組為10-5.49顯示病毒效價並無受到轉染這些載體的影響,僅感染pBEFV-G這組病毒效價略微降低。
在動物實驗方面,利用BALB/c小鼠進行重組載體的肌肉注射,每隔兩週注射一次,總共施打三劑,並固定每週眼窩採血,進行酵素連結免疫吸附試驗(ELISA)測試病毒抗體及中和抗體,發現pBEFV-G搭配pCCL5或是pNES,在第一次注射後第42天相較於單獨pBEFV-G對照組(1:32)都能產生較佳的血清抗病毒抗體效價(1:128),而中和抗體方面(1: 64)相較於對照組(1:16)亦有四倍提升的效力,然而仍無法超越免疫接種不活化病毒組之效力(1:128)。故此G 基因DNA疫苗效力仍須研究加強 。
Bovine ephemeral fever virus (BEFV) is a member of the rhabdoviridae. The BEFV virion contains single-strained, negative-sense RNA genome and envelope. The BEFV can cause acute febrile diease, depressed secretion of milk and even death in cattle and water buffalo. The current vaccine for BEFV were prepared by use of formaldehyde-inactivated virus of 1984 isolate. But its efficacy is not enough. We have tried to improve DNA vaccine of BEFV before. The glycoprotein G gene of BEFV was tested as a target gene combined with cytokine genes, IL-2 and GM-CSF. The G gene was also fused with VP22 to help spreading G gene. All results showed better immune responses, but the antibody responses were not satisfactory.
This study was aimed to further improve G gene DNA vaccine. The chemokine CCL5 was reported to have the ability of attracting leukocytes and dendritic cells, therefore amplifying and shaping the immune responses to DNA vaccine. The CCL5 gene was thus cloned and successfully constructed in expressing plasmid. We demonstrated that CCL5 plasmid could be expressed efficiently in BHK-21 cell. The NES gene which was previously co-constructed with VP22 was also successfully constructed alone. Several combinations of co-transfection with pBEFV-G, pCCL5, pVP22/NES, pNES, and mock vector were performed in BHK-21 cells. We found that pCCL5 could significantly promote the expression of G gene. The pre-transfections of BHK-21 with pCCL5 before virus inoculation were also done. The results showed that pCCL5 had no influence on viral G gene expression. The viral titers(TCID50) were also determined. Results of pre-transfection with pCCL5, pVP22/NES, pNES, and mock vector were 10-5.48, 10-5, 10-5.52, 10-5.14, respectively. All showed similar viral titers as compared with control group (10-5.49). Only pBEFV-G group showed slightly reduced titer of 10-4.78 .
The female BALB/c mice were inoculed by i.m. route with several combinations of the above vectors and three immunizations were performed with two-weeks intervals. Blood samples were weekly collected by orbital bleeding. Sera antibody titers for binding virus were determined by ELISA. Viral neutralizing antibody titers were performed in BHK-21 cell culture system. The results showed that mice immunized with pBEFV-G combined with pCCL5 or pNES had better antibody titer (1:128) than those with pBEFV-G alone (1:32) 42 days after first immunization. Their neutralizing antibody titers (1:64) were also higher than control group (1:16); however still not better than that immunized with inactivated virus (1:128). This modulation of BEFV G DNA vaccine still awaited further improvement.
王俊秀及莊士德。台灣獸醫發展史,行政院農業委員會動植物防疫檢局 pp.223-225,2002。
沈雅玲。牛流行熱病毒外套膜醣蛋白G基因DNA疫苗之研究,國立成功大學生命科學研究所碩士論文,pp.13-84,2005。
呂榮修、李永林、黃士則、蔡向榮、廖迂剛、林地發、曾俊憲、宋華聰。1989年發生在台灣的牛流行熱學研究,台灣畜牧獸醫學會會報,60:51-56,1992。
林朝舜。牛流行性感冒,家畜衛生,台灣省政府農林暨中國村復小聯合委員會編印,pp.54-61,1973。
洪綾蔓。牛流行熱病毒外套膜醣蛋白G基因DNA疫苗之改進:結合單純疱疹病毒VP22基因及使用CpG核苷佐劑之評估,國立成功大學生命科學研究所碩士論文,pp.7-8,2006。
傅宗經。牛流行熱病毒蛋白的生化研究,國立中興大學獸醫微生物學研究所論文,pp.2-16,1999。
謝耀清。牛流行熱病毒之抗原性分析、疫情監控、快速診斷方法與新型雙價疫苗之研發,國立成功大學生命科學研究所博士論文,pp.94-96,2006。
Aints A., Dilber M. S., Smith C. I. E. Intercellular spread of GFP-VP22. The journal of gene medicine 1:275-279, 1999.
Butcher E. C. and Picker L. J. Lymphocyte homing and homeostasis. Science 272:60-66, 1996.
Cantlon J.D., Gordy P.W. and Bowen R.A. Immune responses in mice, cattle, horses to a DNA vaccine for cesicular stomatitis. Vaccine 18:2368-2374, 2000.
Chiu S.Y. and Lu Y.S. The epidemiology of bovine ephemeral fever in Taiwan in 1984. Journal of the Chinese Society of Veterinary Scencei 13:1-9, 1987.
Chiu S.Y. The isolation of bovine ephemeral fever virus in Taiwan in 1984. Journal of the Chinese Society of Veterinary Scencei 12:275-288, 1986.
Cybinski D.H., Davis S.S. and Zakrzewski H. Antigenic variation of the bovine ephemeral fever virus glycoprotein. Archives of virology 124:211-224, 1992.
Dingwall C. and Laskey R. A. Nuclear targeting sequences--a consensus? Trends in biochemical sciences 16:478-481, 1991.
Elliott G., O’Hare P. Intercellular trafficking and protein delivery by a herpesvirus structural protein. Cell 88:223-233, 1997.
Fischer U., Huber J., Boelens W. C., Mattaj I. W., Luhrmann R. The HIV-1 Rev activation domain is a nuclear export signal that accesses an export pathway used by specific cellular RNAs. Cell 82:475-483, 1995.
Frauenschuh A., DeVico A. L., Lim S. P., Gallo R. C., Garzino A. Differential polarization of immune responses by co-administration of antigens with chemokines. Vaccine 23:546-554, 2004.
Hertig C., Pye A.D., Hyatt A.D., Davis S.S., Mc William S.M., Heine H.G., Walker P.J. and Boyle D.B. Vaccinia virus-expressed bovine ephemeral fever virus G but not GNS glycoprotein induces neutralizing antibodies and protects against experimental infection. The Journal of general virology 77:631-640, 1995.
Hsieh Y.C., Chen S.H., Chou C.C., Ting L.J., Itakura C. and Wang F.I. Bovine ephemeral fever in Taiwan (2001–2002). The Journal of veterinary medical science 67:411–416, 2005.
Hsieh Y.C., Lee Y.F., Chen C.W., and Chen S.H. Study of glycoprotein gene variation of bovine ephemeral fever virus isolated in southern Taiwan. The 36th Annual Meeting of the Chinese Society of Microbiology, December 15, Taipei, Taiwan, 2002.
Inaba Y. Bovine ephemeral fever (three day sickness)- Stiff sickness, Bull. Intl. Epizootiol 79:627-673, 1973.
Inaba Y., Kurogi H., Sato K., Goto Y., Omori T. and Matumoto M. Formalin-inactivated, aluminum phosphate gel-adsorbed vaccine of bovine ephemeral fever virus. Archiv fur die Gesamte Virusforschung 42:42-53, 1973.
Inaba Y., Kurogi H., Takahashi A., Sato K. and Matumoto M. Vaccination of cattle against bovine ephemeral fever with live attenuated virus followed by killed virus. Archiv fur die Gesamte Virusforschung 44:121-132, 1974.
Kim S. J., Suh D., Park S. E., Park J. S., Byun H. M., Lee C., Lee S. Y., Kim I., Oh Y. K. Enhanced immunogenicity of DNA fusion vaccine encoding secreted hepatitis B surface antigen and chemokine RANTES. Virology 314:84-91, 2003.
Kongsuwan K., Cybinski D.H., Cooper J. and Walker P.J. Location of neutralizing epitopes on the G protein of bovine ephemeral fever rhabdovirus. The Journal of general virology 79:2573-2581, 1998.
Liao Y.K., Inaba Y., Li N.J., Chain C.Y., Lee S.L. and Liou P.P. Epidemiology of bovine ephemeral fever virus infection in Taiwan. Microbiological Research 153:289-295, 1998.
Lillard J. W., Boyaka P. N., Taub D. D., McGhee J. R. RANTES potentiates antigen-specific mucosal immune responses. Journal of immunology 166:162-169, 2001.
Mackerras I.M., Mackrras J. and Burnet F.M. Experimental studies of ephemeral fever in Australian cattle. Council for Scientific and Industrial Research Melbourne Bulletin, No.136, Australia, 1940.
Mc William S.M., Kongsuwan K., Cowley J.A., Byrne K.A. and Walker P.J. Genome organization and transcription strategy in the complex GNS-L intergenic region of bovine ephemeral fever rhabdovirus. The Journal of general virology 78:1309-1317, 1997.
Mueller A., Kelly E., Strange P. G. Pathways for internalization and recycling of the chemokine receptor CCR5. Blood 99:785-791, 2002.
Nandi S., and Negi B.S. Bovine ephemeral fever: a review. Comparative Immunology , Microbiology and Infectious Diseases 22:81-91, 1999.
Pinto A. R., Reyes-Sandoval A., Ertl H. C. Chemokines and TRANCE as genetic adjuvants for a DNA vaccine to rabies virus. Cellular Immunology 224:106-113, 2003.
Robinson H. L., Montefiori D. C., Johnson R. P., Kalish M. L., Lydy S. L., McClure H. M. DNA priming and recombinant pox virus boosters for an AIDS vaccine. Developments in biologicals 104:93-100, 2000.
Rossi D., Zlotnik A. The biology of chemokine and their receptors. Annual review of immunolog 18:217-242, 2000.
Sallusto F., Lenig D., Mackay C. R., Lanzavecchia A. Flexible programs of chemokine receptor expression on human polarized T helper 1 and 2 lymphocytes. The Journal of experimental medicine 187: 875-883, 1998.
Sato K., Inaba Y., Kurogi H., Omori T. and Yamashino T. Rolling round bottle culture of HmLu-1 cells and the production of bovine ephemeral fever virus. National Institute of Animal Health quarterly 15:109-115, 1975.
St George T.D., Standfast H.A., Christie D.G., Knott S.G. and Morgan I.R. The epizootiology of bovine ephemeral fever in Australia and Papua New Guinea. Australian veterinary journal 53:17-28, 1977.
Theodoridis A., Boshoff S.E.T. and Botha M.J. Syudies on the development of a vaccine against bovine ephemeral fever. The Onderstepoort journal of veterinary research 40:77-82, 1973.
Tzipori S. and Spradbrow P.B. Studies on vaccines against bovine ephemeral fever. Australian veterinary journal 49:183-187, 1973.
Tzipori S. and Spradbrow P.B. Development and behaviour of a strain of bovine ephemeral fever virus with unusual host range. Journal of comparative pathology 84:1-8, 1974.
Tzpori S. and Spradrow P.B. A cell culture vaccine against bovine ephemeral fever. Aust. Vet. J. 54:323-328, 1978.
Uren M.F., Walker P.J., Zakrzewski H., St George T.D. and Byrne K.A. Effective vaccination of cattle using the virion G protein of bovine ephemeral fever virus as an antigen. Vaccine 12:845-850, 1994.
Vanselow B.A., Abetz I. and Trenfield K. A bovine ephemeral fever vaccine incorporating adjuvant Quil A:a comparative study using adjuvants Quil A, aluminium hydroxide gel and dextran sulphate. The Veterinary record 117:37-43, 1985.
Vanselow B.A., Walthall J.C. and Abetz I. Field trials of ephemeral fever vaccines. Veterinary microbiology 46:117-130, 1995.
Wang F. I., Hsu A. M., and Huang K. J. Bovine ephemeral fever in Taiwan . Veterary Diagnosis and Invesigationt 13: 462-467, 2001.
Wang Y., Mc William S. M., Cowley J. A., and Walker P. J. Complex genome organization in the GNS-L intergenic region of Adelaide River rhabdoviruses. Virology 203:63-72, 1994.
Walker P.J., Byrne K.A., Riding G.A., Cowley J.A., Wang Y. and Mc William S. The genome of bovine ephemeral fever rhabdovirus contains two related glycoprotein genes. Virololy 191:49-61, 1992.
Walker P.J., Byrne K.A., Cybinski D.H., Doolan D.L. and Wang Y.H. Proteins of bovine ephemeral fever virus. The Journal of general virology 72:67-74, 1991.
Wolff J.A., Malone R.W., Williams P., Acsadi G., Jani A. and Felgner P.L. Direct gene transfer into mouse and muscle in vivo. Science 23: 1465-1468,
1990.
Wybramietz W., Prinz F., Spiegel M., Schenk A., Bitzer M., Gregor M., Lauer U. Quantification of VP22-GFP spread by direct fluorescence in 15 commonly used cell lines. The journal of gene medicine. 1:265-274, 1999.
Xin K. Q., Lu Y., Hamajima K., Fukushima J., Yang J., Inamura K., Okuda K. (). Immunization of RANTES expression plasmid with a DNA vaccine enhances HIV-1-specific immunity. Clinical Immunology 92: 90-96, 1999.
Yoon H. A., Eo S. K. Differential polarization of immune responses by genetic cotransfer of chemokines changes the protective immunity of DNA vaccine against pseudorabies virus. Immunology 120:182-191, 2007.
Zlotnik A. and Yoshie O. Chemokines: a new classification system and their role in immunity. Immunity 12:121-127, 2000.