| 研究生: |
蔡佩芳 Cai, Pei-Fang |
|---|---|
| 論文名稱: |
奈米銀石墨烯電極應用於電容去離子海水淡化 Capacitive deionization of seawater effected by nano Ag and Ag@C on graphene |
| 指導教授: |
王鴻博
Wang, H-Paul |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 105 |
| 中文關鍵詞: | 海水淡化 、電容去離子技術 、石墨烯 、奈米核殼材料 、奈米銀 |
| 外文關鍵詞: | Desalination, Capacitive deionization, graphene, core-shell, nano Ag |
| 相關次數: | 點閱:76 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
水資源與能源匱乏問題加劇,乾淨飲用水取得更加困難。海水為地球上最豐富的水資源,海水淡化技術也成為未來發展趨勢。近年電容去離子(capacitive deionization (CDI))海水淡化方法具低耗能、低二次污染、低成本等優勢,尤其能量消耗僅0.1 ~ 0.6 kWh/m3,遠低於傳統方法。CDI 也可應用於工業用水軟化與毒性重金屬汙染地下水及廢水處理。
CDI電極材料之關鍵特性包括: 導電性、比表面積、親水性等,因此以無污染而且低成本之方式研製新型石墨烯(graphene),並以電子顯微鏡(SEM)、穿透式電子顯微鏡(TEM)、X-光繞射(XRD)、傅立葉轉換紅外光譜(FTIR)、拉曼光譜與循環伏安等方法進行特性分析。結果顯示,當氧化石墨烯(GO)還原後其親水性官能基被移除,導致其電極會隨還原時間增加而趨近於疏水性。以醣化合物(β-cyclodextrin) 螯合形成Ag+-CD錯合物,碳化後生成Ag@C核殼(core-shell),利用小角度X光散射儀(SAXS) 分析Ag@C之奈米粒徑約70~110 nm。由同步輻射光源XANES分析後發現Ag@C 中含Ag與少量之Ag2O。
為提升石墨烯電極之抗菌能力與導電性,添加奈米Ag與Ag@C,以改善電極之效率,並以SEM、TEM、XRD等分析其特性,另外,也以循環伏安法與交流阻抗圖譜(EIS)測定,推算其比電容與導電度,並進行NaCl之吸附試驗。實驗結果顯示,添加奈米Ag與Ag@C可明顯提升電極之導電度,並且產生較多之孔洞結構,當濃度增加,其NaCl吸附能力也上升達45%,且反洗能力可回復至90% (5分鐘內)。本CDI海水淡化技術研究初步成果顯示,使用奈米Ag與Ag@C,確實具備海水淡化與抗菌性之效果。
Drinking water is becoming scarce. Seawater is an abundant source for drinking water; therefore, development of the capacitive deionization (CDI) method for desalination is merit. CDI has the advantages of low energy consumption (only 0.1-0.6 kWh/m3), reduced secondary pollution, simple operation, and low-cost. CDI can be applied not only in desalination, but also water softening, removal of metals from groundwater and wastewater.
Characteristics of electrode materials (e. g., conductivity, specific surface area and hydrophilicity (wetting ability)).have a great impact on the CDI process. In this study, graphene (rGO), nano Ag /rGO and Ag@C/rGO were prepared and characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectra, and cyclic voltammetry.
After reduction, rGO possesses the wrinkle surface and becomes porous. The hydrophilic function groups of GO was also removed which lead to the hydrophobic rGO. The specific capacitance of rGO can be high as 140.46 F/g. In addition, the removal efficiency of NaCl can reach up to 15% in a NaCl solution. The particles size of the Ag@C is in the range of 70-110 nm determined by small angle X-ray scattering (SAXS) spectroscopy. Ag and a small amount of Ag2O are found in the Ag@C nanoparticles, which was obtained by component-fitted X-ray adsorption near edge structure (XANES) spectroscopy.
To enhance antimicrobial activity and electrical conductivity, nano Ag and Ag@C were added to promote the performance of graphene electrodes. The conductivity of the porous structure of the electrodes are enhanced in the presence the dispersed nano Ag and Ag@C. The NaCl removal efficiency from seawater can be as high as 45% with the nano Ag and Ag@C/rGO electrodes. Notably, the regeneration can reach 90% in the very short contact time (5 mins). In summary, a very effective method for CDI with an ability of de-infection has been developed in the present work.
1. Ahn, H.-J., Lee, J.-H., Jeong, Y., Lee, J.-H., Chi, C.-S., Oh, H.-J., Nanostructured carbon cloth electrode for desalination from aqueous solutions. Materials Science and Engineering: A 449-451, 841-845, 2007.
2. AlMarzooqi, F.A., Al Ghaferi, A.A., Saadat, I., Hilal, N., Application of Capacitive Deionisation in water desalination: A review. Desalination 342, 3-15, 0, 2014.
3. Anderson, M.A., Cudero, A.L., Palma, J., Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: Will it compete? Electrochimica Acta 55, 3845-3856, 12, 2010.
4. Arnold, B.B., Murphy, G.W., Studies on the electrochemistry of carbon and chemically-modified surfaces. Journal of Physical Chemistry 65, 135-138, 1, 1961.
5. Bala, T., Bhame, S., Joy, P., Prasad, B., Sastry, M., A facile liquid foam based synthesis of nickel nanoparticles and their subsequent conversion to NicoreAgshell particles: structural characterization and investigation of magnetic properties. Journal of Materials Chemistry 14, 2941-2945, 19, 2004.
6. Bourcier, W.L., Aines, R.D., Haslam, J.J., Schaldach, C.M., O'brien, K.C., Cussler, E., 2013. Deionization and desalination using electrostatic ion pumping. Google Patents.
7. Brame, J., Li, Q., Alvarez, P.J.J., Nanotechnology-enabled water treatment and reuse: emerging opportunities and challenges for developing countries. Trends in Food Science & Technology 22, 618-624, 11, 2011.
8. Chen, C., Long, M., Xia, M., Zhang, C., Cai, W., Reduction of graphene oxide by an in-situ photoelectrochemical method in a dye-sensitized solar cell assembly. Nanoscale Research Letters 7, 101, 1, 2012.
9. Chen, W., Yan, L., In situ self-assembly of mild chemical reduction graphene for three-dimensional architectures. Nanoscale 3, 3132-3137, 8, 2011.
10. Chen, W., Yan, L., Bangal, P., Chemical reduction of graphene oxide to graphene by sulfur-containing compounds. The Journal of Physical Chemistry C 114, 19885-19890, 47, 2010.
11. Choi, J.-H., Fabrication of a carbon electrode using activated carbon powder and application to the capacitive deionization process. Separation and Purification Technology 70, 362-366, 3, 2010.
12. Choi, J.-Y., Choi, J.-H., A carbon electrode fabricated using a poly(vinylidene fluoride) binder controlled the Faradaic reaction of carbon powder. Journal of Industrial and Engineering Chemistry 16, 401-405, 3, 2010.
13. Ciupină, V., Zamfirescu, S., Prodan, G., Evaluation of Mean Diameter values using Scherrer Equation Applied to Electron Diffraction Images. 2007.
14. Costa, S., Borowiak-Palen, E., Kruszyńska, M., Bachmatiuk, A., Kaleńzuk, R., Characterization of carbon nanotubes by Raman spectroscopy. Materials Science (0137-1339) 262, 2008.
15. Curtis, N.F., Wikaira, J., The Preparation and Structure of [(2, 4-Dimethyl-8-ethyl-5, 8-diazadec-4-ene-2-amine) chlorocopper (II)] Perchlorate. Journal of Crystallography 20132013.
16. Das, M.R., Sarma, R.K., Saikia, R., Kale, V.S., Shelke, M.V., Sengupta, P., Synthesis of silver nanoparticles in an aqueous suspension of graphene oxide sheets and its antimicrobial activity. Colloids and Surfaces B: Biointerfaces 83, 16-22, 1, 2011.
17. Duan, F., Li, Y., Cao, H., Xie, Y., Zhang, Y., Capacitive deionization by ordered mesoporous carbon: electrosorption isotherm, kinetics, and the effect of modification. Desalination and Water Treatment, 1-8, 2013.
18. El-Ghonemy, A.M.K., Water desalination systems powered by renewable energy sources: Review. Renewable and Sustainable Energy Reviews 16, 1537-1556, 3, 2012.
19. Evans, S., Hamilton, W.S., The Mechanism of Demineralization at Carbon Electrodes. Journal of The Electrochemical Society 113, 1314-1319, 12, 1966.
20. Fan, Z.-J., Kai, W., Yan, J., Wei, T., Zhi, L.-J., Feng, J., Ren, Y.-m., Song, L.-P., Wei, F., Facile Synthesis of Graphene Nanosheets via Fe Reduction of Exfoliated Graphite Oxide. ACS Nano 5, 191-198, 1, 2010.
21. Farmer, J., 1995. Method and apparatus for capacitive deionization, electrochemical purification, and regeneration of electrodes. Google Patents.
22. Farmer, J.C., Fix, D.V., Mack, G.V., Pekala, R.W., Poco, J.F., 1995. Capacitive, deionization with carbon aerogel electrodes: Carbonate, sulfate, and phosphate, Conference: 27. international technical conference of the Society for the Advancement of Material and Process Engineering (SAMPE): diversity into the next century, Albuquerque, NM (United States), 9-12 Oct 1995; Other Information: PBD: 24 Jul 1995.
23. Foo, K.Y., Hameed, B.H., A short review of activated carbon assisted electrosorption process: An overview, current stage and future prospects. Journal of Hazardous Materials 170, 552-559, 2–3, 2009.
24. Gabelich, C.J., Xu, P., Cohen, Y., 2010. Chapter 10 Concentrate Treatment for Inland Desalting, in: Isabel, C.E., Andrea, I.S. (Eds.), Sustainability Science and Engineering. Elsevier, pp. 295-326.
25. Gao, M., Pan, Y., Huang, L., Hu, H., Zhang, L., Guo, H., Du, S., Gao, H.-J., Epitaxial growth and structural property of graphene on Pt (111). Applied Physics Letters 98, 033101, 3, 2011.
26. Gao, Y., Pan, L., Li, H., Zhang, Y., Zhang, Z., Chen, Y., Sun, Z., Electrosorption behavior of cations with carbon nanotubes and carbon nanofibres composite film electrodes. Thin Solid Films 517, 1616-1619, 5, 2009.
27. Gong, J.-L., Jiang, J.-H., Liang, Y., Shen, G.-L., Yu, R.-Q., Synthesis and characterization of surface-enhanced Raman scattering tags with Ag/SiO< sub> 2</sub> core–shell nanostructures using reverse micelle technology. Journal of colloid and interface science 298, 752-756, 2, 2006.
28. Grahame, D.C., The Electrical Double Layer and the Theory of Electrocapillarity. Chemical Reviews 41, 441-501, 3, 1947.
29. Gray, S., Semiat, R., Duke, M., Rahardianto, A., Cohen, Y., 2011. 4.04 - Seawater Use and Desalination Technology, in: Editor-in-Chief: Peter, W. (Ed.), Treatise on Water Science. Elsevier, Oxford, pp. 73-109.
30. Gu, Y., Wu, H., Xiong, Z., Al Abdulla, W., Zhao, X.S., The electrocapacitive properties of hierarchical porous reduced graphene oxide templated by hydrophobic CaCO3 spheres. Journal of Materials Chemistry A 2, 451-459, 2, 2014.
31. Han, Y., Luo, Z., Yuwen, L., Tian, J., Zhu, X., Wang, L., Synthesis of silver nanoparticles on reduced graphene oxide under microwave irradiation with starch as an ideal reductant and stabilizer. Applied Surface Science 266, 188-193, 0, 2013.
32. Helmholtz, H., Ueber einige Gesetze der Vertheilung elektrischer Ströme in körperlichen Leitern mit Anwendung auf die thierisch-elektrischen Versuche. Annalen der Physik 165, 211-233, 6, 1853.
33. Hou, C.-H., Huang, C.-Y., A comparative study of electrosorption selectivity of ions by activated carbon electrodes in capacitive deionization. Desalination 314, 124-129, 0, 2013.
34. Hou, C.-H., Huang, J.-F., Lin, H.-R., Wang, B.-Y., Preparation of activated carbon sheet electrode assisted electrosorption process. Journal of the Taiwan Institute of Chemical Engineers 43, 473-479, 3, 2012.
35. Hou, C.-H., Liang, C., Yiacoumi, S., Dai, S., Tsouris, C., Electrosorption capacitance of nanostructured carbon-based materials. Journal of Colloid and Interface Science 302, 54-61, 1, 2006.
36. Huang, Y., Liang, J., Chen, Y., An Overview of the Applications of Graphene-Based Materials in Supercapacitors. Small 8, 1805-1834, 12, 2012.
37. Humplik, T., Lee, J., O'Hern, S.C., Fellman, B.A., Baig, M.A., Hassan, S.F., Atieh, M.A., Rahman, F., Laoui, T., Karnik, R., Wang, E.N., Nanostructured materials for water desalination. Nanotechnology 22, 292001, 29, 2011.
38. Jande, Y.A.C., Kim, W.S., Predicting the lowest effluent concentration in capacitive deionization. Separation and Purification Technology 115, 224-230, 0, 2013.
39. Jeon, B.G., No, H.C., Development of a two-dimensional coupled-implicit numerical tool for analysis of the CDI operation. Desalination 288, 66-71, 2012.
40. Jia, B., Zou, L., Graphene nanosheets reduced by a multi-step process as high-performance electrode material for capacitive deionisation. Carbon 50, 2315-2321, 6, 2012a.
41. Jia, B., Zou, L., Wettability and its influence on graphene nansoheets as electrode material for capacitive deionization. Chemical Physics Letters 548, 23-28, 0, 2012b.
42. Johnson, A.M., Newman, J., Desalting by Means of Porous Carbon Electrodes. Journal of The Electrochemical Society 118, 510-517, 3, 1971.
43. Joo, S.W., Kim, K., Adsorption of phenylacetylene on gold nanoparticle surfaces investigated by surface‐enhanced Raman scattering. Journal of Raman Spectroscopy 35, 549-554, 7, 2004.
44. Jung, H.-H., Hwang, S.-W., Hyun, S.-H., Lee, K.-H., Kim, G.-T., Capacitive deionization characteristics of nanostructured carbon aerogel electrodes synthesized via ambient drying. Desalination 216, 377-385, 1–3, 2007.
45. Li, C., Wang, X., Chen, F., Zhang, C., Zhi, X., Wang, K., Cui, D., The antifungal activity of graphene oxide–silver nanocomposites. Biomaterials 34, 3882-3890, 15, 2013a.
46. Li, H., Gao, Y., Pan, L., Zhang, Y., Chen, Y., Sun, Z., Electrosorptive desalination by carbon nanotubes and nanofibres electrodes and ion-exchange membranes. Water Research 42, 4923-4928, 20, 2008.
47. Li, H., Liang, S., Li, J., He, L., The capacitive deionization behaviour of a carbon nanotube and reduced graphene oxide composite. Journal of Materials Chemistry A 1, 6335-6341, 21, 2013b.
48. Li, H., Lu, T., Pan, L., Zhang, Y., Sun, Z., Electrosorption behavior of graphene in NaCl solutions. Journal of Materials Chemistry 19, 6773, 37, 2009a.
49. Li, H., Pan, L., Lu, T., Zhan, Y., Nie, C., Sun, Z., A comparative study on electrosorptive behavior of carbon nanotubes and graphene for capacitive deionization. Journal of Electroanalytical Chemistry 653, 40-44, 1-2, 2011.
50. Li, H., Pan, L., Nie, C., Liu, Y., Sun, Z., Reduced graphene oxide and activated carbon composites for capacitive deionization. Journal of Materials Chemistry 22, 15556-15561, 31, 2012.
51. Li, H., Pan, L., Zhang, Y., Zou, L., Sun, C., Zhan, Y., Sun, Z., Kinetics and thermodynamics study for electrosorption of NaCl onto carbon nanotubes and carbon nanofibers electrodes. Chemical Physics Letters 485, 161-166, 1–3, 2010a.
52. Li, H., Zaviska, F., Liang, S., Li, J., He, L., Yang, H.Y., A high charge efficiency electrode by self-assembling sulphonated reduced graphene oxide onto carbon fibre: towards enhanced capacitive deionization. Journal of Materials Chemistry A 2, 3484-3491, 10, 2014.
53. Li, H., Zou, L., Pan, L., Sun, Z., Novel Graphene-Like Electrodes for Capacitive Deionization. Environmental Science & Technology 44, 8692-8697, 22, 2010b.
54. Li, H., Zou, L., Pan, L., Sun, Z., Using graphene nano-flakes as electrodes to remove ferric ions by capacitive deionization. Separation and Purification Technology 75, 8-14, 1, 2010c.
55. Li, L., Zou, L., Song, H., Morris, G., Ordered mesoporous carbons synthesized by a modified sol–gel process for electrosorptive removal of sodium chloride. Carbon 47, 775-781, 3, 2009b.
56. Liang, P., Yuan, L., Yang, X., Zhou, S., Huang, X., Coupling ion-exchangers with inexpensive activated carbon fiber electrodes to enhance the performance of capacitive deionization cells for domestic wastewater desalination. Water Research 47, 2523-2530, 7, 2013.
57. Losowyj, D.J., Storch, I.R., McCune, T.J., McEuen, P.L., 2013. CVD graphene growth and transfer techniques for the fabrication of micromechanical resonators, APS March Meeting Abstracts, p. 1117.
58. Migowski, P., Machado, G., Texeira, S.R., Alves, M.C.M., Morais, J., Traverse, A., Dupont, J., Synthesis and characterization of nickel nanoparticles dispersed in imidazolium ionic liquids. Physical Chemistry Chemical Physics 9, 4814-4821, 34, 2007.
59. Mishra, A.K., Ramaprabhu, S., Functionalized graphene sheets for arsenic removal and desalination of sea water. Desalination 282, 39-45, 0, 2011.
60. Mossad, M., Zou, L., Evaluation of the salt removal efficiency of capacitive deionisation: Kinetics, isotherms and thermodynamics. Chemical Engineering Journal 223, 704-713, 0, 2013.
61. Murphy, G.W., Caudle, D.D., Mathematical theory of electrochemical demineralization in flowing systems. Electrochimica Acta 12, 1655-1664, 12, 1967.
62. Myint, M.T.Z., Dutta, J., Fabrication of zinc oxide nanorods modified activated carbon cloth electrode for desalination of brackish water using capacitive deionization approach. Desalination 305, 24-30, 0, 2012.
63. Nadakatti, S., Tendulkar, M., Kadam, M., Use of mesoporous conductive carbon black to enhance performance of activated carbon electrodes in capacitive deionization technology. Desalination 268, 182-188, 1-3, 2011.
64. Nikitin, A., Gogotsi, Y., Nanostructured carbide-derived carbon. Encyclopedia of nanoscience and nanotechnology 10, 1-22, 2004.
65. Notley, S.M., Highly Concentrated Aqueous Suspensions of Graphene through Ultrasonic Exfoliation with Continuous Surfactant Addition. Langmuir 28, 14110-14113, 40, 2012.
66. Oren, Y., Capacitive deionization (CDI) for desalination and water treatment — past, present and future (a review). Desalination 228, 10-29, 1-3, 2008.
67. Pan, L., Wang, X., Gao, Y., Zhang, Y., Chen, Y., Sun, Z., Electrosorption of anions with carbon nanotube and nanofibre composite film electrodes. Desalination 244, 139-143, 1–3, 2009.
68. Park, B.-H., Kim, Y.-J., Park, J.-S., Choi, J., Capacitive deionization using a carbon electrode prepared with water-soluble poly(vinyl alcohol) binder. Journal of Industrial and Engineering Chemistry 17, 717-722, 4, 2011.
69. Pasricha, R., Gupta, S., Srivastava, A.K., A facile and novel synthesis of Ag-graphene-based nanocomposites. Small 5, 2253-2259, 20, 2009.
70. Pastoriza-Santos, I., Koktysh, D.S., Mamedov, A.A., Giersig, M., Kotov, N.A., Liz-Marzán, L.M., One-Pot Synthesis of Ag@TiO2 Core−Shell Nanoparticles and Their Layer-by-Layer Assembly. Langmuir 16, 2731-2735, 6, 2000.
71. Porada, S., Sales, B.B., Hamelers, H.V.M., Biesheuvel, P.M., Water Desalination with Wires. The Journal of Physical Chemistry Letters 3, 1613-1618, 12, 2012.
72. Porada, S., Zhao, R., van der Wal, A., Presser, V., Biesheuvel, P.M., Review on the science and technology of water desalination by capacitive deionization. Progress in Materials Science 58, 1388-1442, 8, 2013.
73. Ruoff, R.S., Graphene-based, Graphene-derived, and New Carbon Materials. 2013.
74. Shen, X., Jiang, L., Ji, Z., Wu, J., Zhou, H., Zhu, G., Stable aqueous dispersions of graphene prepared with hexamethylenetetramine as a reductant. Journal of Colloid and Interface Science 354, 493-497, 2, 2011.
75. Song, S., Zhang, Y., Bao, S., Hung, W., Desalination by capacitive deionization with carbon-based materials as electrode: a review. Surface Review and Letters 20, 1330003, 06, 2013.
76. Suss, M.E., Baumann, T.F., Bourcier, W.L., Spadaccini, C.M., Rose, K.A., Santiago, J.G., Stadermann, M., Capacitive desalination with flow-through electrodes. Energy & Environmental Science 5, 9511-9519, 11, 2012.
77. Tsai, S., Song, Y., Tsai, C., Yang, C., Chiu, W., Lin, H., Ultrasonic spray pyrolysis for nanoparticles synthesis. Journal of materials science 39, 3647-3657, 11, 2004.
78. Tsouris, C., Mayes, R., Kiggans, J., Sharma, K., Yiacoumi, S., DePaoli, D., Dai, S., Mesoporous Carbon for Capacitive Deionization of Saline Water. Environmental Science & Technology 45, 10243-10249, 23, 2011.
79. Villar, I., Roldan, S., Ruiz, V., Granda, M., Blanco, C., Menéndez, R., Santamaría, R., Capacitive Deionization of NaCl Solutions with Modified Activated Carbon Electrodes†. Energy & Fuels 24, 3329-3333, 6, 2010.
80. Wang, H., Zhang, D., Yan, T., Wen, X., Zhang, J., Shi, L., Zhong, Q., Three-dimensional macroporous graphene architectures as high performance electrodes for capacitive deionization. Journal of Materials Chemistry A 1, 11778-11789, 38, 2013.
81. Wang, L., Wang, M., Huang, Z.-H., Cui, T., Gui, X., Kang, F., Wang, K., Wu, D., Capacitive deionization of NaCl solutions using carbon nanotube sponge electrodes. Journal of Materials Chemistry 21, 18295, 45, 2011.
82. Wang, Z., Dou, B., Zheng, L., Zhang, G., Liu, Z., Hao, Z., Effective desalination by capacitive deionization with functional graphene nanocomposite as novel electrode material. Desalination 299, 96-102, 0, 2012.
83. Wilf, M., Water Desalination. Kirk-Othmer Encyclopedia of Chemical Technology 2007.
84. Wimalasiri, Y., Zou, L., Carbon nanotube/graphene composite for enhanced capacitive deionization performance. Carbon 59, 464-471, 0, 2013.
85. Wojciechowski, K., Obła̧kowski, J., Preparation and characterisation of nanostructured spherical powders for thermoelectric applications. Solid state ionics 157, 341-347, 1, 2003.
86. Wu, C., Cheng, Q., Wu, K., Wu, G., Li, Q., Graphene prepared by one-pot solvent exfoliation as a highly sensitive platform for electrochemical sensing. Analytica chimica acta 825, 26-33, 2014.
87. Yan, J., Wei, T., Shao, B., Ma, F., Fan, Z., Zhang, M., Zheng, C., Shang, Y., Qian, W., Wei, F., Electrochemical properties of graphene nanosheet/carbon black composites as electrodes for supercapacitors. Carbon 48, 1731-1737, 6, 2010.
88. Yang, C.-M., Choi, W.-H., Na, B.-K., Cho, B.W., Cho, W.I., Capacitive deionization of NaCl solution with carbon aerogel-silicagel composite electrodes. Desalination 174, 125-133, 2, 2005.
89. Yuan, W., Gu, Y., Li, L., Green synthesis of graphene/Ag nanocomposites. Applied Surface Science 261, 753-758, 0, 2012.
90. Zhang, D., Wen, X., Shi, L., Yan, T., Zhang, J., Enhanced capacitive deionization of graphene/mesoporous carbon composites. Nanoscale 4, 5440-5446, 17, 2012a.
91. Zhang, D., Yan, T., Shi, L., Peng, Z., Wen, X., Zhang, J., Enhanced capacitive deionization performance of graphene/carbon nanotube composites. Journal of Materials Chemistry 22, 14696-14704, 29, 2012b.
92. Zhao, R., Theory and operation of capacitive deionization systems. Wageningen University 2013.
93. Zheng, L., Zhang, G., Zhang, M., Guo, S., Liu, Z.H., Preparation and capacitance performance of Ag–graphene based nanocomposite. Journal of Power Sources 201, 376-381, 0, 2012.
94. Zou, L., Li, L., Song, H., Morris, G., Using mesoporous carbon electrodes for brackish water desalination. Water Research 42, 2340-2348, 8–9, 2008.
95. Zouboulis, A.I., Silver recovery from aqueous streams using ion flotation. Minerals Engineering 8, 1477-1488, 12, 1995.
校內:2019-08-05公開