| 研究生: |
王端輝 Wang, Duan-hui |
|---|---|
| 論文名稱: |
平滑式隱藏馬可夫模型之二因子模糊時間序列預測模式 Fuzzy Time Series Forcasting based on Smoothing Hidden Markov Model |
| 指導教授: |
李昇暾
Li, Sheng-tun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 資訊管理研究所 Institute of Information Management |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 英文 |
| 論文頁數: | 47 |
| 中文關鍵詞: | 模糊集合 、模糊時間序列 、模糊關係 、隱馬可夫 、預測 、平滑技術 |
| 外文關鍵詞: | Forecasting, Smoothing, Hidden Markov Model, Fuzzy time series, Fuzzy sets |
| 相關次數: | 點閱:90 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
當今資訊科技發展快速,如何藉由精確的計算何資訊分析來對資料進行預測成為相當重要的議題,但在我們的日常生活中,模糊以及不完全的資料充斥在我們的身邊。因此,近年來,在不確定的環境下模糊時間序列預測漸漸地扮演著越來越重要的角色。本研究擬提出以隱馬可夫模形為基礎之模糊時間序列預測模式,配合平滑技術的應用,預期得到更佳的預測準確率,並利用加權平均法解模糊化,已使預測結果更趨近於真實情況。本研究將把所提出的預測模式實際應用於台北地區1992年~1996年每日平均溫度與雲量資料,藉此以完整說明本研究所提出之預測流程,並透過均方誤與平均預測誤差率此二衡量指標,說明本研究所提出之預測模式較過去相關的模糊時間序列預測模式,擁有較低的預測誤差率。本研究也對2004年~2006年台灣加權股票指數與美國納斯達克指數進行預測,預測結果也顯示本研究能獲得比其他模式更精確的預測準確度。
Nowadays the information technology is growing fast, and the issue of how to predict through scientific computation and information analysis becomes crucial. But vague and incomplete data described as linguistic variables massively exists in our daily life. Traditional forecasting cannot solve forecasting problems when the historical data are linguistic values, so fuzzy time series forecasting become more and more important. In this paper, we proposed a new fuzzy time series forecasting model based on hidden Markov model using the smoothing approach to acquire more accurate result, with the weighted average defuzzify achieve the true performance of the model approximately. For performance evaluation, the data of daily average temperature and average cloud density from June to September, 1992 to 1996 in Taipei. The experiments validate the better accuracy of the proposed model achieved over traditional fuzzy time series models.
Chen, S.-M. (1996). Forecasting enrollments based on fuzzy time series. Fuzzy Sets Syst., 81, 311-319.
Chen, S.-M. (2002). Forecasting enrollments based on high-order fuzzy time series. Cybernetics and Systems: An International Journal, 33, 1-16.
Chen, S.-M., & Hsu, C.-C. (2004). A new method to forecast enrollments using fuzzy time series. International Journal of Applied Science and Engineering, 2, 234-244.
Chen, S.-M., & Hwang, J.-R. (2000). Temperature prediction using fuzzy time series. IEEE Transactions on Systems, Man, and Cybernetics─Part B: Cybernetics, 30, 263-275.
Chen, S.-M., & Chung, N.-Y. (2006). Forecasting enrollments using high-order fuzzy time series and genetic algorithms, International Journal of Intelligent Systems, 21, 485–501.
Hsu, Y.-Y., Tse, S.-M., & Wu, B. (2003). A new approach of bivariate fuzzy time series analysis to the forecasting of a stock index. Fuzziness and Knowledge-Based Systems, 11, 671-690.
Huarng, K. (2001a). Heuristic models of fuzzy time series for forecasting. Fuzzy Sets Syst., 123, 369-386.
Huarng, K. (2001b). Effective lengths of intervals to improve forecasting in fuzzy time series. Fuzzy Sets Syst., 123, 387-394.
Huarng, K. (2004). A dynamic approach to adjusting lengths of intervals in fuzzy time series forecasting. Intelligent Data Analysis, 8, 3-27.
Huarng, K., & Yu, T. H.-K. (2004). A dynamic approach to adjusting lengths of intervals in fuzzy time series forecasting, Intelligent Data Analysis, 8, 3-27.
Huarng, K., & Yu, T. H.-K. (2006). Ratio-based lengths of intervals to improve fuzzy time series forecasting. IEEE Transactions on Systems, Man, and Cybernetics─Part B: Cybernetics, 36, 328-340.
Hwang, J.-R., Chen, S.-M., & Lee, C.-H. (1998). Handling forecasting problems using fuzzy time series. Fuzzy Sets Syst., 100, 217-228.
Jelinek, F., & Mercer, R. (1980). Interpolated estimation of Markov source parameters from sparse data. Pattern Recognition in Practice, 381-402.
Katz, S. M. (1987). Estimation of probabilities from sparse data for language model component of a speech recognizer. IEEE Transaction on Acoustic, Speech, Signal Processing, ASSP 35(3), 400-401.
Kneser, R. & Ney, H. (1995). Improved backing-off for m-gram language modeling. International Conference on Acoustic, Speech and Signal Processing, 181-184
Laplace, P. S. (1795) A Philosophical Essay on Probabilities. 1951 translation, New York: Dover.
Lee, L.-W., Wang, L.-H., Chen, S.-M., & Leu, Y.-H. (2006). Handling forecasting problems based on two-factors high-order fuzzy time series. IEEE Transactions on Fuzzy Systems, 14, 468-477.
Li, J.-Y. (2008). A Study of Forecasting Two-factor Fuzzy Time Series using a Stochastic Hidden Markov Model. Master Thesis, NCKU, Taiwan.
Li, S.-T., & Chen, Y.-P. (2004). Natural partition-based forecasting model for fuzzy time series, IEEE International Conference on Fuzzy Systems, Budapest, Hungary, 25-29.
Li, S.-T., & Cheng, Y.-C. (2007). Deterministic fuzzy time series model for forecasting enrollments. Comput. Math. Appl., 53, 1904-1920.
Manning & Schütze (1999). Foundations of Statistical Natural Language Processing. Cambridge: MIT Press
Own, C.-M., & Yu, P.-T. (2005). Forecasting fuzzy time series on a heuristic high-order model. Cybernetics and Systems: An International Journal, 36, 705-717.
Rabiner, L. R., & Juang, B. H. (1986). An introduction to hidden Markov models. IEEE ASSP Mag., 3, 4-16.
Song, Q., & Chissom, B. S. (1993a). Forecasting enrollments with fuzzy time series—part I. Fuzzy Sets Syst., 54, 1-9.
Song, Q., & Chissom, B. S. (1993b). Fuzzy time series and its models. Fuzzy Sets Syst., 54, 269-277.
Song, Q., & Chissom, B. S. (1994). Forecasting enrollments with fuzzy time series—part II. Fuzzy Sets Syst., 62, 1-8.
Sullivan, J., & Woodall, W. H. (1994). A comparison of fuzzy forecasting and Markov modeling. Fuzzy Sets Syst., 64, 279-293.
Wangming, W. (1986). Fuzzy reasoning and fuzzy relational equations. Fuzzy Sets Syst., 20, 67-78.
Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8, 338-353.