簡易檢索 / 詳目顯示

研究生: 鄭佳和
Cheng, Chia-Ho
論文名稱: 燃料進氣角度對無閥式微脈衝爆震推進器操作之影響
Influence of Fuel Injection Angle on the Operation of a Small Pulse Detonation Engine
指導教授: 吳明勳
Wu, Ming-Hsung
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 147
中文關鍵詞: 緩燃焰轉爆震波無閥式脈衝爆震雷射陰影顯影
外文關鍵詞: Pulse Detonation, Valveless, Laser Shadowgraph
相關次數: 點閱:104下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究透過改變燃料供氣歧管角度,探討無閥式脈衝爆震引擎於操
    作時爆震波回傳對供氣阻絕及時序之影響。實驗中乙烯/氧氣於化學當量
    下點火,除透過高速顯影觀察反應波引燃後於流道中傳遞動態外,也建
    構一雷射陰影(Laser Shadowgraph)系統解析過程中爆震波於流道內傳遞
    情形。以及透過動態壓力感測器進行壓力波之量化分析。
    由實驗結果可知在30 度入口角時下游反應波傳遞模態為一低速爆
    震焰,而在60 度與90 度時則為典型爆震焰模態。由氣相層析儀分析可
    得於較小角度時混合狀態較為貧油,30 度角時當量比約為0.6。而在上
    游進氣端之雷射陰影觀察可知在較小入口角度時,反應波前方有明顯震
    波結構於氧氣歧管中傳遞。而在最大入口角90 度時,震波傳遞至交會
    處時則強度大幅降低,即於氧氣歧管中已無發現明顯震波傳遞。實驗也
    透過於氧氣進氣歧管中安裝一動態壓力感測器量測管內壓力變化。估算
    30 度至90 度之供氣阻斷時間分別約為306 us、219 us 與299 us,提高
    供氣壓力後則阻斷時間則分別下降到約281 us、266 us 與270 us。而比
    較單發操作以及連續操作下之上游進氣端之反應波與震波之顯影,由結
    果中可看出於70 Hz 連續操作下反應波往上游傳遞速度較慢。另外實驗
    也於岐管上游處設計一空腔幾何,由壓力記錄可得在原設計時岐管中壓
    力峰值約為0.45 MPa,而在具空腔設計條件下其峰值壓力可下降至約
    0.12 MPa。

    Effects of inlet channel angle on the gas feeding dynamics in pulsed
    detonation cycle in a micro pulsed detonation engine were investigated in the
    study. Stoichiometric of ethylene/oxygen were used and high-speed
    cinematography were applied to observe the flame propagation in mixing
    section and inlet manifolds upstream of the ignition spot. Laser shadowgraph
    was also utilized to analyze the shock propagations in the manifolds.
    It can be found that both of 60° and 90° were typical detonation wave, and a
    low-speed detonation mode in 30° case. By using a gas chromatography(GC)
    to measure the mixing status in different angle cases. The equivalent ratio
    decreased with inlet angle increase. It can be seen that with the smaller inlet
    angle, there were an intense shock wave propagating back into the inlet
    manifolds. With 90° inlet angle, the shock wave could only propagate until
    the cross section, and the expansion resulted in the dissipation of the shock. A
    dynamic pressure sensor was installed on the oxygen feeding channel to
    quantify the pressure evolutions in the inlet manifold. The results showed that
    the shut-off duration for the 30° to 90° inlet was about 306, 219 and 299 us
    respectively. And reduce to 281, 266 and 270 us by increasing supply
    pressure. Comparison of single shot and continuous operating of 70 Hz, there
    were the slowest reaction wave velocity in the inlet section. A cavity design
    has been apply in the manifold. It can be seen that the shock wave in oxygen
    manifold were not obvious in cavity case. And the value of peak pressure
    were 0.45 MPa in original design but there were only 0.12 MPa in cavity case.

    摘要 i 誌謝 xii 目錄 xiii 表目錄 xv 圖目錄 xvi 第一章 緒論 1 1-1 前言 1 1-2 研究目的 2 1-3 文獻回顧 3 1-4 本文架構 8 第二章 實驗設備與方法 10 2-1 微爆震腔設計 10 2-2 微爆震腔測試平台 14 2-3 雷射陰影顯影系統 17 2-4 點火系統 20 2-5 爆震波流場顯影 22 高速連續顯影 22 延遲單張顯影 24 2-6 動態壓力量測 27 2-7 氣相層析儀量測 28 2-8 測試流程 31 第三章 燃料進氣角度對爆震波生成與傳遞之影響 34 3-1 爆震波生成與傳遞 34 反應波動態 34 爆震波動態 43 動態壓力量測 47 燃氣組成 48 3-2 反應波與震波對供氣之影響 52 反應波動態 52 爆震波動態 57 供氣阻斷特性分析 64 3-3 小結 69 第四章 脈衝頻率對爆震波生成與傳遞之影響 71 4-1 各燃料進氣角度下之脈衝反應波傳遞模態 71 30度入口角 71 60度入口角 85 90度入口角 98 4-2 各燃料進氣角度下之脈衝反應波回傳動態 111 4-3 各頻率下之脈衝反應波回傳動態 114 4-4 小結 123 第五章 進氣道空腔對爆震波生成與傳遞之影響 124 5-1 反應波傳遞模態 124 5-2 反應波回傳動態 127 5-3 與無空腔進氣道之比較 127 5-4 小結 132 第六章 結論與未來展望 134 6-1 結論 134 6-2 未來展望 136 參考文獻 137 附錄A 不銹鋼流道板設計工程圖 144 附錄B 不銹鋼PDE治具設計工程圖 146

    [1] K. Kailasanath (2003), Recent Developments in the Research on Pulse
    Detonation Engines, AIAA Journal 41, 145-159.
    [2] G.D. Roy, S.M. Frolov, A.A. Borisov, and D.W. Netzer (2004), Pulse
    Detonation Propulsion: Challenges, Current Status, and Future
    Perspective, Progress in Energy and Combustion Science 30, 545-672.
    [3] W. Fan, C. Yan, X. Huang, Q. Zhang, and L. Zheng (2003),
    Experimental Investigation on Two-Phase Pulse Detonation Engine,
    Combustion and Flame 133, 441-450.
    [4] S.T. Sanders, J.A. Baldwin, T.P. Jenkins, D.S. Baer, and R.K. Hanson
    (2000), Diode-Laser Sensor for Monitoring Multiple Combuston
    Parameters in Pulse Detonation Engines, Proceedings of the
    Combustion Institute 28, 587-594.
    [5] J.T. Peace, D.D. Joshi, and F.K. Lu, Experimental Study of High-
    Frequency Fluidic Valve Injectors for Detonation Engine Applications,
    52nd Aerospace Sciences Meeting, National Harbor, Maryland, USA,
    Jan 13-17, 2014.
    [6] E.M. Braun, T.S. Balcazar, D.R. Wilson, and F.K. Lu (2012),
    Experimental Study of a High-Frequency Fluidic Valve Fuel Injector,
    Journal of Propulsion and Power 28, 1121-1125.
    [7] F.H. Ma, J.Y. Choi, and V. Yang (2006), Propulsive Performance of
    Airbreathing Pulse Detonation Engines, Journal of Propulsion and
    Power 22, 1188-1203.
    [8] F.H. Ma, J.Y. Choi, and V. Yang (2005), Thrust Chamber Dynamics
    and Propulsive Performance of Multitube Pulse Detonation Engines,
    Journal of Propulsion and Power 24, 681-691.
    138
    [9] G.D. Roy, S.M. Frolov, D.W. Netzer and A.A. Borisov, High-speed
    Deflagration and Detonation: Fundamentals and Control, Elex-KM
    Press, Moscow, 2000.
    [10] F. Schauer, J. Stutrud, and R. Bradley, Detonation Initiation Studies
    and Performance Results for Pulsed Detonation Engine Applications,
    39th AIAA Aerospace Sciences Meeting & Exhibit, Reno, Nevada, USA,
    Jan 8-11, 2001.
    [11] T.R.A. Bussing, G.L. Lidstone, E. Christofferson, T.A. Kaemming, and
    G. Jones, Pulse Detonation Propulsion Proof of Concept Test Article
    Development, 38th AIAA/ASME/SAE/ASEE Joint Propulsion
    Conference & Exhibit, Indianapolis, Indiana, USA, Jul 7-10, 2002.
    [12] W. Bollay, Pulse Detonation Jet Propulsion, United States Patent No.
    2942412, 1960.
    [13] D.D. Winfree and L.G. Hunter, Pulse Detonation Igniter for Pulse
    Detonation Chambers, United States Patent No. 5937635, 1999.
    [14] J. Lu, L. Zheng, Z. Wang, C. Peng and X. Chen (2014), Thrust
    Measurement Method Verification and Analytical Studies on a Liquid-
    Fueled Pulse Detonation Engine, Chinese Journal of Aeronautics, In
    Press.
    [15] W. Bryan, Rotating Detonation Engines the 'Wave' of the Future?
    Available:http://bryanwweber.com/writing/articles/2012/01/10/rotating
    -detonation-engines-the-wave-of-the-future/, Last Check on May 16,
    2012.
    [16] F.K. Lu and D.S. Jensen, Potential Viability of a Fast-Acting Micro-
    Solenoid Valve for Pulsed Detonation Fuel Injection, 41st Aerospace
    Sciences Meeting and Exhibit, Reno, Nevada, USA, Jan 6-9, 2003.
    139
    [17] P.K. Panicker, The Development and Testing of Pulsed Detonation
    Engine Ground Demonstrators, Ph.D. Dissertation, University of Texas
    at Arlington, Arlington, 2008.
    [18] K. Kailasanath, The Rotating-Detonation-Wave Engine Concept: A
    Brief Status Report, 49th AIAA Aerospace Sciences Meeting, Orlando,
    Florida, USA, Jan 4-7, 2011.
    [19] Q. Zheng, C.S. Weng and Q.D. Bai (2013), Experimental Research on
    the Propagation Process of Continuous Rotating Detonation Wave,
    Defence Technology 9, 201-207.
    [20] Y.H. Wang, J.P. Wang, T.Y. Shi, Y.S. Liu, Y.S. Li and Y. Li (2013),
    Discovery of Breathing Phenomena in Continuously Rotating
    Detonation, Procedia Engineering 67, 188-196.
    [21] C.M. Brophy, L.S. Werner, and J.O. Sinibaldi, Performance
    Characterization of a Valveless Pulse Detonation Engine, 41st
    Aerospace Sciences Meeting and Exhibit, Reno, Nevada, USA, Jan 6-9,
    2003.
    [22] C.M. Brophy and R.K. Hanson (2006), Fuel Distribution Effects on
    Pulse Detonation Engine Operation and Performance, Journal of
    Propulsion and Power 22, 1155-1161.
    [23] D. Piton, A. Prigent, L. Serre, and C. Monjaret, Performance of a
    Valveless Airbreathing Pulse Detonation Engine, 40th
    AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Fort
    Lauderdale, Florida, USA, Jul 11-14, 2004.
    [24] F.H. Ma, J.Y. Choi, and V. Yang (2006), Internal Flow Dynamics and
    Performance of Valveless Airbreathing Pulse Detonation Engine,
    Journal of Propulsion and Power 24, 479-490.
    [25] D.W. Mattison, J.T.C. Liu, J.B. Jeffries, R.K. Hanson, C.M. Brophy,
    and J.O. Sinibaldi, Tunable Diode-Laser Temperature Sensor for
    140
    Evaluation of a Valveless Pulse Detonation Engine, 43rd AIAA
    Aerospace Sciences Meeting and Exhibit, Reno, Nevada, USA, Jan 10-
    13, 2005.
    [26] Z.W. Wang, X.G. Chen, J.J. Huang, L.X. Zheng and C.G. Peng (2014),
    Semi-Free-Jet Simulated Experimental Investigation on a Valveless
    Pulse Detonation Engine, Applied Thermal Engineering 62, 407-414.
    [27] J.A Nicholls, H.R. Wilkinson, and R.B. Morrison (1957), Intermittent
    Detonation as a Thrust-Producing Mechanism, Journal of Jet
    Propulsion 27, 534-541.
    [28] K. Wang, W. Fan, X.D. Zhu, Y. Yan and Z. Gao (2013), Experimental
    Investigations on Effects of Wall-Temperature on Performance of a
    Pulse Detonation Rocket Engine, Experimental Thermal and Fluid
    Science 48, 230-237.
    [29] M. Cooper, J. Jewell, and J. E. Shepherd, The Effect of a Porous Thrust
    Surface on Detonation Tube Impulse, 39th AIAA/ASME/SAE/ASEE
    Joint Propulsion Conference and Exhibit, Huntsville, Alabama, USA,
    Jul 20-23, 2003.
    [30] M. Shimo and S.D. Heister (2008), Multicyclic-Detonation-Initiation
    Studies in Valveless Pulsed Detonation Combustors, Journal of
    Propulsion and Power 24, 336-344.
    [31] F. Ma, J.Y. Choi, and V. Yang, Numerical Modeling of Valveless
    Airbreathing Pulse Detonation Engine, 43rd AIAA Aerospace Science
    Meeting and Exhibit, Reno, Nevada, USA, Jan 10-13, 2005.
    [32] Z. Wang, C. Peng, J. Lu, and L. Zheng (2014), Experimental Study of
    Pressure Back-Propagation in a Valveless Air-Breathing Pulse
    Detonation Engine, Journal of Aerospace Engineering, In Press.
    [33] T. Bussing and G. Pappas, An Introduction to Pulse Detonation Engine,
    AIAA Paper 94-0263, 1994.
    141
    [34] E.D. Lynch, R. Eidelman, and S. Palaniswamy, Computational Fluid
    Dynamic Analysis of The Pulse Detonation Wave Engine Concept,
    32nd Aerospace Sciences Meeting and Exhibit, Reno, Nevada, USA,
    Jan 10-13, 1994.
    [35] S. Eidelman and W. Grossman, Pulsed Detonation Engine
    Experimental and Theoretical Review, 28th Joint Propulsion
    Conference and Exhibit, Nashville, Tennessee, USA, Jul 6-8, 1992.
    [36] K. Kailasanath, A Review of PDE Research-Performance Estimates,
    39th Aerospace Sciences Meeting and Exhibit, Reno, Nevada, USA,
    Jan 8-11, 2001.
    [37] K.R. McManus and E.R. Furlong, MEMS-Based Pulse Detonation
    Engine for Small-Scale Propulsion Applications, AIAA Paper 01-3469,
    2001.
    [38] S. Kitano, Y. Kimura, H. Sato, and A.K. Hayashi, Micro-Size Pulse
    Detonation Engine Performance, 45th AIAA Aerospace Sciences
    Meeting and Exhibit, Reno, Nevada, USA, Jan 8-11, 2007.
    [39] 王長禹,圓形截面微管內之預混焰傳遞模式解析,國立成功大學
    機械工程學系碩士論文,2010。
    [40] 王俊凱,預混焰於微管槽內加速機制之研究,國立成功大學機械
    工程學系碩士論文,2010。
    [41] 邱柏淵,微槽內爆震焰產生過程中震波與反應波之交互作用,國
    立成功大學碩士論文,2012。
    [42] M.H. Wu and C.Y. Wang (2011), Reaction Propagation Modes in
    Millimeter-Scale Tubes for Ethylene/Oxygen Mixtures, Proceedings of
    the Combustion Institute 33, 2287-2293.
    142
    [43] M.H. Wu and W.C. Kuo (2012), Transition to Detonation of an Expand
    Flame Ring in a Sub-Millimeter Gap, Combustion and Flame 159,
    1366-1368.
    [44] M.H. Wu, M.P. Burke, S.F. Son, and R.A. Yetter (2007), Flame
    Acceleration and the Transition to Detonation of Stoichiometric
    Ethylene/Oxygen in Microscale Tube, Proceedings of the Combustion
    Institute 31, 2429-2436.
    [45] M.H. Wu and W.C. Kuo (2012), Accelerative Expansion and DDT of
    Stoichiometric Ethylene/Oxygen Flame Rings in Micro-Gaps,
    Proceedings of the Combustion Institute 34, 2017-2024.
    [46] M.H. Wu and W.C. Kuo (2012), Transmission of Near-Limit
    Detonation Wave Through a Planar Sudden Expansion in a Narrow
    Channel, Combustion and Flame 159, 3414-3422.
    [47] Z.E. Chen and M.H. Wu, The Enhancement of DDT in Microchannel
    Through Saw-Tooth Shaped Wall, 24th International Colloquium on
    the Dynamics of Explosions and Reactive Systems (ICDERS), Taipei,
    Taiwan, Jul 28 – Aug 3, 2013.
    [48] P.Y. Chiu, C.H. Cheng, Z.E. Chen, and M.H. Wu, Visualization of
    Shock and Reaction Fronts During Flame Acceleration and Transition
    to Detonation in a Small Channel, 9th Asia-Pacific Conference on
    Combustion, Gyeongju, Korea, May 19-22, 2013.
    [49] M.H. Wu and T.H. Lu (2012), Development of a Chemical
    Microthruster Based on Pulsed Detonation, Journal of Micromechanics
    and Microengineering 22, 105040.
    [50] 呂宗訓,脈衝爆震微推進器之概念驗證及原型發展,國立成功大
    學碩士論文,2012。
    143
    [51] G.S. Settles, Schlieren and Shadowgraph Techniques: Visualizing
    Phenomena in Transparent Media, Springer Berlin Heidelberg,
    Germany, 2001.
    [52] M. Born, E. Wolf, Principles of Optics 7th (Expanded) Edition,
    Cambridge University Press, UK, 1999.
    [53] P.J. Marriott (2004), Chapter 8 Gas Chromatography, Journal of
    Chromatography Library 69, 319-368.
    [54] C.F. Poole, Gas Chromatography, Elsevier, USA, 2012.
    [55] V. Bychkov, V. Akkerman, G. Fru, A. Petchenko and L.E. Eriksson
    (2007), Flame Acceleration in the Early Stage of Burning in Tubes,
    Combustion and Flame 50, 263-276.
    [56] 郭維鈞,微槽內爆震焰通過二維突擴之傳遞特性,國立成功大學
    機械工程學系碩士論文,2011。

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE