簡易檢索 / 詳目顯示

研究生: 賴承敬
Lai, Cheng-Jing
論文名稱: 具有奈米球結構之氣體感測器之研製
Fabrication of Gas Sensor with Nano-Sphere Structures
指導教授: 劉文超
Liu, Wen-Chau
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 140
中文關鍵詞: 蕭特基氣體感測器奈米球
外文關鍵詞: Schottky, Gas sensor, Nanosphere
相關次數: 點閱:76下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,吾人研製一系列氮化鋁鎵蕭特基二極體式氫氣感測器元件,並在感測區域加入奈米結構,主要重點在於奈米尺寸(< 100 nm)之材料具有較大之比表面積,利用旋轉塗佈的方式將二氧化矽奈米粒子(SiO2 nanoparticles)及聚苯乙烯奈米球(Polystyrene nanospheres)分散於基材表面並以不同的製程方式,製作出不同的表面形態結構,可大幅提升元件的感測特性;本文所提出的元件是在空氣環境下通入不同濃度的氫氣來研究其氫氣感測及響應特性。
    首先,吾人製作並研究一個未加入奈米結構之鈀金屬/氮化鋁鎵半導體的蕭特基二極體氫氣感測器,由於氮化鋁鎵材料具有寬能隙以及良好的熱穩定度特性,相較於傳統之半導體所研製的氣體感測器,本文所提出之金屬/半導體式的氫氣感測器可操作在寬廣的溫度範圍,並且擁有良好的感測靈敏度以及蕭特基能障變化。
    接著,吾人在元件上塗佈單層聚苯乙烯奈米球,利用聚苯乙烯溶於丁酮的特性,將覆蓋在聚苯乙烯奈米球上之鈀金屬以舉離的方式去除,使得蕭特基金屬表面形成金字塔狀的鈀奈米結構。利用此奈米結構可大幅提升元件特性。另外一方面,吾人製作並研製一系列塗佈不同濃度二氧化矽奈米粒子的元件,經由實驗結果得知,插入二氧化矽奈米粒子在鈀金屬以及氮化鋁鎵之間,以形成鈀/二氧化矽/氮化鋁鎵(金屬/氧化物/半導體)的氫氣感測器,可以大幅降低空氣中的穩態電流,並且藉由二氧化矽奈米粒子較大的比表面積,提供較多的氣體吸附座,以大幅提升元件的感測特性。並且,針對各元件之表面吾人予以不同的儀器分析,進一步證實經過奈米球(奈米粒子)處理的鈀金屬表面,較未處理的鈀金屬表面的粗糙度與比表面積明顯提升。儀器包括掃描式電子顯微鏡及原子力顯微鏡。
    最後,吾人製作並研製一個由氧化鋅奈米粒子當作電流通道的半導體式二氧化氮感測器。藉由氧化鋅奈米粒子較大的比表面積,提供較多的氣體吸附座,以大幅提升元件的感測特性。並且,吾人探討經過鍛燒處理的元件,對於感測特性的影響。

    In this work, we present a series of AlGaN-based Schottky diode hydrogen-sensing devices. The nanospheres (nanoparticles) are used to make different nanostructure on the surface of sensing area. The key point is that the nanoscale (< 100 nm) material provides a large specific surface area. Different nanostructures were fabricated by effectively coating the PS nanospheres (NS) and SiO2 nanoparticles (NPs). The structures were used to enhance the sensing performance. The hydrogen sensing and response characteristics of studied devices under different hydrogen concentrations are investigated in an air atmosphere.
    Firstly, a Pd/AlGaN (M-S) Schottky diode hydrogen sensor is fabricated and investigated. Due to wide bandgap and superior thermal stability, the studied AlGaN-based diode-type hydrogen sensor exhibits a higher detection sensitivity, a larger Schottky barrier height variations, and a wide temperature range.
    Secondly, the pyramid-like Pd structure on the Pd metal surface is fabricated by coating a monolayer PS NS, etching PS NS by butanone, and lifting-off the PS NS, which is covered by Pd metal. The studied device with the pyramid-like Pd structure can significantly enhance the sensing performance. On the other hand, a series of devices with an insertion layer of SiO2-NPs are fabricated and investigated. According to the experimental results, Pd/SiO2 NPs/AlGaN-based (metal/oxide/semiconductor) hydrogen sensor is fabricated by inserting SiO2-NPs layer between Pd/AlGaN interface. The structure can significantly reduce the baseline current in air and service more gas adsorption sites to enhance the sensing performance.
    Third, the analyses are applied to examine the surfaces morphology with and without nanostructure, including scanning electron microscope (SEM) and atomic force microscopic (AFM) instrument. It further confirms the surface roughness and specific surface area of the device with nanostructure is obviously upgraded.
    Finally, ZnO NPs-based NO2 gas sensors are investigated. The ZnO NPs have a larger specific surface area and can offer more gas-adsorption sites to significantly enhance sensing performance. And the studied device with calcination treatment is carried out to investigate the effect on sensing characteristic.

    Chapter 1. Introduction 1.1 Introduction of Gas Sensors………………………………………………… 1 1.2 Hydrogen Characteristic and Sensing Mechanism…………………………. 2 1.3 Nitrogen Dioxide Characteristic and Sensing Mechanism…………………. 4 1.4 Thesis Organization………………………………………………………… 6 Chapter 2. Experimental Details 2.1 Devices Preparation and Fabrication……………………………………….. 7 2.1.1 Pd/AlGaN Schottky Diode………………………………………. 7 2.1.2 Pd/AlGaN Schottky Diode with a Pyramid-like Pd Structure…… 7 2.1.3 Pd/AlGaN Schottky Diode with an Insertion Layer of SiO2 Nanoparticles (NPs)……………………………………………… 8 2.1.4 ZnO Nanoparticles (NPs)-based Nitrogen-Dioxide Gas Sensor…. 9 2.2 Gas Sensing Measurement………………………………………………….. 9 2.3 Surface Analysis……………………………………………………………. 11 Chapter 3. Hydrogen Sensing Characteristics of a Pd/AlGaN (MS) Schottky Diode-Type Hydrogen Sensor 3.1 Introduction………………………………………………………………... 12 3.2 Experimental…………………………………………………………….…. 13 3.3 Results and Discussion…………………………………………………….. 14 3.3.1 Surface Analysis……………………………………………………... 14 3.3.2 Electrical Property Analysis…………………………………………… 14 3.3.3 Hydrogen Sensing Performance…………………………………… 16 3.3.4 Transient Responses………………………………………………….. 17 3.3.5 Steady-State Analyses………………………………………………... 18 3.3.6 Kinetic Adsorption Analyses…………………………………………. 19 3.4 Summary…………………………………………………………………… 21 Chapter 4. Hydrogen Sensing Characteristics of a Pd/AlGaN (MS) Schottky Diode-Type Hydrogen Sensors with Nanostructure 4.1 Introduction……………………………………………………………….. 22 4.2 Experimental – PS Nanospheres (NS)…………………………………….. 23 4.3 Results and Discussion…………………………………………………….. 24 4.3.1 Surface Analysis…………………………………………………….. 24 4.3.2 Electrical Property Analysis…………………………………………. 25 4.3.3 Hydrogen Sensing Performance…………………………………….. 27 4.3.4 Transient Responses…………………………………………………. 28 4.3.5 Steady-State Analyses………………………………………….…….... 29 4.3.6 Kinetic Adsorption Analyses………………………………….……… 31 4.4 Summary…………………………………………………………………... 32 4.5 Experimental – SiO2 nano particles (NPs)………………………………… 33 4.6 Results and Discussion……………………………………………………. 34 4.6.1 Surface Analysis…………………………………………………….. 34 4.6.2 Electrical Property Analysis………………………………………… 34 4.6.3 Hydrogen Sensing Performance……………………………………. 37 4.6.4 Transient Responses………………………………………………… 38 4.6.5 Steady-State Analyses………………………………………………... 39 4.6.6 Kinetic Adsorption Analyses…………………………………….…… 40 4.7 Summary………………………………………………………………….. 40 Chapter 5. Nitrogen Dioxide (NO2) Sensing Characteristics of a ZnO Nanoparticles (NPs) Device 5.1 Introduction………………………………………………………………. 42 5.2 Experimental……………………………………………………………… 42 5.3 Results and Discussion…………………………………………………… 43 5.3.1 Surface Analysis……………………………………………………. 43 5.3.2 Electrical Property Analysis……………………………………….. 43 5.3.3 Nitrogen Dioxide Sensing Performance…………………………… 44 5.3.4 Transient Responses……………………………………………….. 45 5.4 Summary…………………………………………………………………. 46 Chapter 6. Conclusion and Future Works 6.1 Conclusion……………………………………………………………….. 47 6.2 Future Works……………………………………………………………… 49 References………………………………………………………………………….. 50 Figures……………………………………………………………………………… 65

    [1] H. I. Chen, Y. I. Chou, and C. Y. Chu, “A novel high-sensitive Pd/InP hydrogen sensor fabricated by electroless plating,” Sens. Actuators B, vol. 85, pp. 10-18, 2002.
    [2] P. Ripka, J. Kubik, M. Duffy, W. Hurley, and S. O’Reilly, "Current sensor in PCB technology," IEEE Sens. J., vol. 5, pp. 433-438, 2005.
    [3] A. Baranzahi, E. Janzen, O. Kordina, I. Lundstrom, A. L. Spetz, and P. Tobias, “Fast chemical sensing with metal-insulator silicon carbide structures,” IEEE Electron Device Lett., vol. 18, pp. 287-289, 1997.
    [4] K. Hjort, “Micromechanics in indium phosphide for opto electrical applications,” Semiconductor Conference, 1997. CAS ‘97 Proceedings, 1997 International, vol. 2, pp. 431-440, 1997.
    [5] P. T. Moseley, “Solid state gas sensors,” Meas. Sci. Technol., vol. 8, pp. 223-237, 1997.
    [6] N. Yamazoe and N. Miuta, “Development of gas sensors for environmental protection,” IEEE Tran. Compo. Packag. Manuf. Technol. Part A vol. 18, pp. 252-256, 1995.
    [7] A. Mandelis and C. Christofides, “Physics, chemistry and technology of solid state gas sensor devices,” ch 3, New York: John Wily & Sons (1993).
    [8] S. T. Cho, K. Najafi, C. E. Lowman, and K. D. Wise, “An ultra sensitive silicon pressure-based microflow sensor,” IEEE Trans. Electron Devices, vol. 39, pp. 825-835, 1992.
    [9] W. Gopel, "New materials and transducers for chemical sensors," Sensors. Actuat. B-Chem., vol.18(1-3), pp. 1-21. 1994.
    [10] C. Christofides and A. Mandelis, “Solid-state sensors for trace hydrogen gas detection,” J. Appl. Phys., vol. 68, pp. 1-30, 1990.
    [11] W. J. Buttner, G. J. Maclay, and J. R. Stetter, “Microfabricated amperometric gas sensors, ” IEEE Trans. Electron Devices, vol. 35, pp. 793-799, 1988.
    [12] S. R. Morrison, “Semiconductor Gas Sensors,” Sens. Actuators, vol. 2, pp. 329-341, 1982.
    [13] T. Yamaguchi, T. Kiwa, K. Tsukada, and K. Yokosawa, "Oxygen interference mechanism of platinum-FET hydrogen gas sensor," Sensors and Actuators A: Physical, vol.136(1), pp. 244-248. 2007.
    [14] N. Ali, M. Hashim, and A. Aziz, "Effects of surface passivation in porous silicon as H2 gas sensor," Solid-State Electronics, vol.52(7), pp. 1071-1074. 2008.
    [15] Y. Tsai, K. Lin, K. Chen, and I. Liu, "Transient response of a transistor-based hydrogen sensor," Sensors. Actuat. B-Chem., vol.134(2), pp. 750-754. 2008.
    [16] X. Wang, X. Wang, C. Feng, C. Yang, B. Wang, J. Ran, H. Xiao, C. Wang, and J. Wang, "Hydrogen sensors based on AlGaN/AlN/GaN HEMT," Microelectronics Journal, vol.39(1), pp. 20-23. 2008.
    [17] A. Foucaran, F. Pascal-Delannoy, A. Giani, A. Sackda, P. Combette, and A. Boyer, "Porous silicon layers used for gas sensor applications," Thin Solid Films, vol.297(1-2), pp. 317-320. 1997.
    [18] W. Shin, K. Tajima, Y. Choi, N. Izu, I. Matsubara, and N. Murayama, "Planar catalytic combustor film for thermoelectric hydrogen sensor," Sensors. Actuat. B-Chem., vol.108(1-2), pp. 455-460. 2005.
    [19] K. Tajima, F. Qiu, W. Shin, N. Izu, I. Matsubara, and N. Murayama, "Micromechanical fabrication of low-power thermoelectric hydrogen sensor," Sensors. Actuat. B-Chem., vol.108(1-2), pp. 973-978. 2005.
    [20] C. Cheng, Y. Tsai, K. Lin, H. Chen, and W, Liu, "Hydrogen sensing properties of a Pt-oxide-Al 0.24 Ga 0.76 As high-electron-mobility transistor," Appl. Phys. Lett, vol.86(11), pp. 112103. 2005.
    [21] L. Tien, P. Sadik, D. Norton, L. Voss, S. Pearton, H. Wang, B. Kang, F. Ren, J. Jun, and J. Lin, "Hydrogen sensing at room temperature with Pt-coated ZnO thin films and nanorods," Applied Physics Letters, vol.87, pp. 222106. 2005.
    [22] P. Gruendler, "Chemical Sensors," Springer, Berlin, Chapter 1, pp. 9, 2007.
    [23] D. G. Castner, and B. D. Ratner, "Biomedical surface science: Foundations to frontiers," Surf. Sci. , vol. 500, no. 1-3, pp. 28-60, Mar. 2002.
    [24] I. Lundström, S. Shivaraman, C. Svensson, and L. Lundkvist, “A hydrogen-sensitive MOS field-effect transistor,” Appl. Phys. Lett., vol.26, pp. 55-57, 1975.
    [25] H. I. Chen, C. K. Hsiung, and Y. I. Chou, “Characterization of Pd/GaAs Schottky Diodes Prepared by Electroless Plating Technique,” Semicond. Sci. Technol., vol. 18, pp. 620-626, 2003.
    [26] L. M. Lechuga, A. Calle, D. Golmayo, and F. Briones, “A New Hydrogen Sensor Based on a Pt/GaAs Schottky Diode,” J. Electrochem. Soc., vol. 138, pp. 159-161, 1991.
    [27] M. Yousuf, B. Kuliyev, and B. Lalevic, “Pd-InP Schottky diode hydrogen sensors,” Solid-state. Electron., vol. 25, pp. 753-758, 1982.
    [28] V. Battut, J. P. Blanc, E. Goumet, V. Soulière, and Y. Monteil, “NO2 sensor based on InP epitaxial thin layers,” Thin Solid Films, vol. 348, pp. 266-272, 1999.
    [29] H. I. Chen, Y. I. Chou, and C. K. Hsiung, “Comprehensive study of adsorption kinetics for hydrogen sensing with an electroless-plated Pd/InP Schottky diode,” Sens. Actuators B, vol. 92, pp. 6-16, 2003.
    [30] H. I. Chen and Y. I. Chou, “Evaluation of the perfection of the Pd-InP Schottky interface from the energy viewpoint of hydrogen adsorbates,” Semicond. Sci. Technol., vol. 19, pp. 39-44, 2004.
    [31] V. Battut, J. P. Blanc, and C. Maleysson, “Gas sensitivity of InP epitaxial thin layers” Sens. Actuators B, vol. 44, pp. 503-506, 1997.
    [32] Y. I. Chou, C. M. Chen, and H. I. Chen, “A new Pd/InP Schottky hydrogen sensor fabricated by electrophoretic deposition with Pd nanoparticles,“ IEEE Electron Device Lett., vol. 26(2), pp. 62-65, 2005.
    [33] H. J. Pan, K. W. Lin, K. H. Yu, C. C. Cheng, K. B. Thei, W. C. Liu, and H. I. Chen, “Highly hydrogen-sensitive Pd/InP metal-oxide-semiconductor Schottky diode hydrogen sensor,” IEE Electron. Lett., vol. 38, no.2, pp. 92-94, 2002
    [34] A. L. Spetz, L. Nnëus, H. Svenningstrop, P. Toblas, L.-G. Ekedahl and O. Larsson et al., “SiC based field effect gas sensors for industrial applications,” Phys Status Solidi A, vol. 185, pp. 15–25, 2001.
    [35] F. Solzbacher, C. Imawan, H. Steffes, E. Obermeier and M. Eickhoff, “A highly stable SiC based microhotplate NO2 gas-sensor, ” Sensor Actuat B, vol. 78, pp. 216–220, 2001.
    [36] S. Roy, C. Jacob, and S. Basu, “Ohmic contacts to 3C–SiC for Schottky diode gas sensors,” Solid-State Electron, vol. 47, pp. 2035–2041, 2003.
    [37] F. Qiu, M. Matsumiya, W. Shin, N. Izu and N. Murayama, “Investigation of thermoelectric hydrogen sensor based on SiGe film,” Sens. Actuators B, vol. 94, pp. 152-160, 2003.
    [38] Y. Gurbuz, , W. P. Kang, J. L. Davidson, and D. V. Kerns, “Current Conduction Mechanism and Gas Adsorption Effects on Device Parameters of the Pt/SnO /Diamond Gas Sensor, ” IEEE Trans. Electron Devices., vol. 46, no.5, pp. 914-920, 1999.
    [39] Y. Gurbuz, W. P. Kang, J. L. Davison, and D. V. Kerns, “Diamond microelectronic gas sensors,” Sens. Actuators B, vol. 33, pp. 100-104,1996.
    [40] Y. Gurbuz, W. P. Kang, J. L. Davidson, and D. V. Kerns, “Analyzing the mechanism of hydrogen adsorption effects on diamond based MIS hydrogen sensors, ” Sens. Actuators B, vol. 36, pp. 68-72, 1996.
    [41] B. P. Luther, S. D. Wolter and S. E. Mohney, “High temperature Pt Schottky diode gas sensors on n-type GaN, ” Sensor Actuator B, vol. 56, pp. 164–168, 1999.
    [42] J. Kim, B. P. Gila, G. Y. Chung, C. R. Abernathy, S. J. Pearton, and F. Ren, “Hydrogen-sensitive GaN Schottky diodes, ” Solid-State Electron, vol. 47, pp. 1069–1073, 2003.
    [43] J. Song, W. Lu, J. S. Flynn, and G. R. Brandes, “AlGaN/GaN Schottky diode hydrogen sensor performance at high temperatures with different catalytic metals,” Solid-State Electronics, vol. 49, pp. 1330-1334, 2005.
    [44] C. C. Cheng, Y. Y. Tsai, K. W. Lin, H. I. Chen, C. T. Lu, and W. C. Liu, “Hydrogen sensing characteristics of a Pt-oxide-Al0.3Ga0.7As MOS Schottky diode,” Sens. Actuators B, vol. 99, pp. 425-430, 2004.
    [45] C. C. Cheng, Y. Y. Tsai, K. W. Lin, H. I. Chen, W. H. Hsu, H. M. Chuang, Chun-Yuan Chen, and W. C. Liu, “Hydrogen sensing characteristics of Pd- and Pt-Al0.3Ga0.7As metal–semiconductor (MS) Schottky diodes,” Semicond. Sci. Technol., vol. 19, pp. 778-782, 2004.
    [46] W. P. Kang and Y. Gürbüz, “Comparison and analysis of Pd- and Pt-GaAs Schottky diodes for hydrogen detection,” J. Appl. Phys., vol. 75, no. 12, pp. 8175-8181, 1994.
    [47] L. M. Lechuga, A. Calle, D. Golmayo, and F. Briones, “Different catalytic metals (Pt, Pd, and Ir) for GaAs Schottky barrier sensors,” Sens. Actuators B, vol. 7, pp. 614-618, 1992.
    [48] Y. Y. Tsai, K. W. Lin, C. T. Lu, H. I. Chen, H. M. Chuang, C. Y. Chen, C. C. Cheng, and W. C. Liu, “Investigation of hydrogen-sensing properties of Pd/lGaAs-based Schottky diodes”, IEEE Trans. Electron Devices, vol. 50, p.2532-2539, 2003.
    [49] K. W. Lin, H. I. Chen, C. C. Cheng, H. M. Chuang, C. T. Lu, and W. C. Liu, “Characteristics of a new Pt/oxide/In0.49Ga0.51P hydrogen-sensing Schottky diode,” Sens. Actuators B. vol. 94, pp. 145-151, 2003.
    [50] K. W. Lin, H. I. Chen, H. M. Chuang, C. Y. Chen, and W. C. Liu, “A Hydrogen sensing Pd/InGaP metal-semiconductor (MS) Schottky diode hydrogen sensor,” Semicond. Sci. Technol., vol. 18, pp. 615-619, 2003.
    [51] D. E. Aspnes and A. Heller, “Barrier height and leakage reduction in n-GaAs -platinum group metal Schottky barriers upon exposure to hydrogen,” J. Vac. Sci. Technol. B, vol. 1, no. 3, pp. 602-607, 1983.
    [52] W. C. Liu, H. J. Pan, H. I Chen, K. W. Lin, S. Y. Cheng, and K. H. Yu, “Hydrogen-sensitive characteristics of a novel Pd/InP metal-oxide-semiconductor (MOS) Schottky diode hydrogen sensor,” IEEE Trans. Electron Devices, vol. 48, pp. 1938-1944, 2001.
    [53] H. I. Chen and Y. I. Chou, “ A comparative study on hydrogen sensing performances between electroless plated and thermal evaporated Pd/InP Schottky diodes,” Semicond. Sci. Technol., vol. 18, pp. 104-110, 2003.
    [54] S. Okuyama, K. Umemoto, K. Okauyama, S. Ohshima, and K. Matsushita, ” Pd/Ni-Al2O3-Al tunnel diode as high-concentration-hydrogen gas sensor,” J. Appl. Phys., vol. 36, pp. 1228-1232, 1997.
    [55] S. Okuyama, H. Usami, K. Okauyama, H. Yamada, and K. Matsushita, ” Improved response time of Pd/Ni-Al2O3-Al tunnel diode hydrogen gas sensor,” J. Appl. Phys., vol. 36, pp. 6905-6908, 1997.D
    [56] K. Mutamba, M. Flath, A. Sigurdardottir, A. Vogt, and H. L. Hartnagel, ” A GaAs pressure sensor with frequency output based on resonant tunneling diodes,” IEEE Trans. vol. 48, pp. 1333-1337, 1999.
    [57] C. T. Lu, K. W. Lin, H. I. Chen, H. M. Chuang, C. Y. Chen, and W. C. Liu, “A new Pd/oxide/Al0.3Ga0.7As MOS hydrogen sensor,” IEEE Electron Device Lett., vol. 24, pp. 390-392, 2003.
    [58] L. Poteat and B. Lalevic, “Pd-MOS hydrogen and hydrocarbon sensor device, ” IEEE Electron Device Lett., vol. 2, pp. 32-34, 1981.
    [59] O. Casals, B. Barcones, C. Serre, J. R. Morante, P. Godignon, J. Montserrat, and J. Mill´an, “Characterisation and stabilisation of Pt/TaSix/SiO2/SiC gas sensor, ” Sens. Actuators B, vol. 109, pp. 119-127, 2005.
    [60] S. Pitcher, J. A. Thiele, H. Ren, and J. F. Vetelino, ”Current/voltage characteristics of a semiconductor metal oxide gas sensor, ”Sens. Actuators B, vol. 93, pp. 454-462, 2003.
    [61] P. Salomonsson, E. Jobson, B. Häggendal, J. Nytomt, C. Carlsson, M. Glavmo, and A. Baranzahi, “Response of metal-oxide-silicon carbide sensors to simulated and real exhaust gases,” Sens. Actuators B, vol. 43, pp. 52-59, 1997.
    [62] I. Lundström, “Hydrogen sensitive MOS-structures part1: principles and applications,” Sens. Actuators, vol. 1, pp. 403-426, 1981.
    [63] S. Batra, K. Park, S. Banerjee, D. Kwong, A. Tasch, M. Rodder, and R. Sundaresan, “Rapid thermal hydrogen passivation of polysilicon MOSFET’s,” IEEE Electron Device Lett., vol. 11, pp. 194-196, 1990.
    [64] R. E. Stahlbush, “Interface defect formation in MOSFETs by atomic hydrogen exposure,” IEEE Trans. Nucl. Sci., vol. 41, pp. 1844-1853, 1994.
    [65] T. Wang, C. Huang, P. C. Chou, S. S. S. Chung, and T. E. Chang, “Effect of hot carrier induced interface state generation in submicron LDD MOSFET’s,” IEEE Trans. Electron Devices, vol. 41, pp. 1618-1622, 1994.
    [66] I. C. Kizilyalli, J. W. Lyding, and K. Hess, “Deuterium post-metal annealing of MOSFET’s for improved hot carrier reliability,” IEEE Electron Device Lett., vol. 18, pp. 81-83, 1997.
    [67] H. Seo, T. Endoh, H. Fukuda, and S. Nomura, “High sensitive MOSFET gas sensors with porous platinum gate electrode,” IEE Electron Lett., vol. 33, pp. 535-536, 1997.
    [68] K. W. Lin, C. C. Cheng, S. Y. Cheng, K. H. Yu, C. K. Wang, H. M. Chuang, J. Y. Chen, C. Z. Wu, and W. C. Liu, “A novel Pd/oxide/GaAs metal–insulator–semiconductor field-effect transistor (MISFET) hydrogen sensor,” Semicond. Sci. Technol, vol. 16, pp. 997-1001, 2001.
    [69] B. V. Ruijven, J. F. Lamarque, D. P. V. Vuuren, T. Kram, and H. Eerens, "Emission scenarios for a global hydrogen economy and the consequences for global air pollution," Glob. Environ. Change-Human Policy Dimens., vol. 21, pp. 983-994, 2011
    [70] R. C. Weast, Handbook of Chemistry and Physics, CRC Press, Cleveland, 1976, pp. D-107.
    [71] C. C. Chang, and Y. E. Chen, “Fabrication of high sensitivity ZnO thin film ultrasonic devices by electrochemical etch techniques,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 44, pp. 624-628, 1997.
    [72] G. Alefeld and J. Völkl, Hydrogen in metals I-basic properties, ch 12, Berlin; Springer-Verlag (1978).
    [73] G. Alefeld and J. Völkl, Hydrogen in metals II-Application-oriented properties, ch 3, Berlin: Springer-Verlag, 1978.
    [74] D. N. Jewett and A. C. Makrides, “Diffusion of hydrogen through palladium and palladium-silver alloy,” J. Chem. Soc. Faraday Trans. vol. 61, pp. 932-939, 1965.
    [75] A. Salehi, A. Nikfarjam, and D.J. Kalantari, “Pd/porous-GaAs Schottky contact for hydrogen sensing application,” Sens Actuators B, vol. 113, pp. 419-427, 2006.
    [76] J Schalwig, G Müller, U Karrer, M Eickhoff, O. Ambacher, M. Stutzmann, L.Görgens, and G. Dollinger, “Hydrogen response mechanism of Pt-GaN Schottky diodes,” Appl. Phys. Lett., vol. 80, pp. 1222-1224, 2002
    [77] I. Lundström and L. G. Petersson, “Chemical sensors with catalytic metal gates,” J. Vac. Sci. Technol. A, vol. 14, pp.1539-1545, 1996.
    [78] L. Liao, H. Lu, J. Li, H. He, D. Wang, D. Fu, C. Liu, and W. Zhang, "Size dependence of gas sensitivity of ZnO nanorods," J. Phys. Chem. C, vol.111(5), pp. 1900¡V1903. 2007.
    [79] O. Lupan, G. Chai, and L. Chow, "Novel hydrogen gas sensor based on single ZnO nanorod," Microelectronic Engineering, vol.85(11), pp. 2220-2225. 2008.
    [80] N. Zhang, K. Yu, L. Li, and Z. Zhu, "Investigation of electrical and ammonia sensing characteristics of Schottky barrier diode based on a single ultra-long ZnO nanorod," Applied Surface Science, vol.254(18), pp. 5736-5740. 2008.
    [81] M. Ivanovskaya, A. Gurlo, and P. Bogdanov, "Mechanism of O3 and NO2 detection and selectivity of In2O3 sensors," Sensors. Actuat. B-Chem., vol.77(1-2), pp. 264-267. 2001.
    [82] F. T. Liu, S. F. Gao, S. K. Pei, S. C. Tseng, and C. H. J. Liu, "ZnO nanorod gas sensor for NO2 detection," J. Taiwan Inst. Chem. Eng., vol.40(5), pp. 528-532. 2009.
    [83] E. Oh, H. Y. Choi, S. H. Jung, S. Cho, J. C. Kim, K. H. Lee, S. W. Kang, J. Kim, J. Y. Yun, and S. H. Jeong, "High-performance NO2 gas sensor based on ZnO nanorod grown by ultrasonic irradiation," Sensors and Actuators B-Chemical, vol.141(1), pp. 239-243. 2009.
    [84] J. Park and J. Y. Oh, "Highly-sensitive NO2 Detection of ZnO Nanorods Grown by a Sonochemical Process," Journal of the Korean Physical Society, vol.55(3), pp. 1119-1122. 2009.
    [85] O. Safonova, G. Delabouglise, B. Chenevier, A. Gaskov, and M. Labeau, "CO and NO2 gas sensitivity of nanocrystalline tin dioxide thin films doped with Pd, Ru and Rh," Materials Science and Engineering: C, vol.21(1-2), pp. 105-111. 2002.
    [86] Y. C. Chang, J. K. Liou, and W. C. Liu, “Improved light extraction efficiency of a high-power GaN-based light-emitting diode with a three-dimensional-photonic crystal (3-D-PhC) Backside Reflector,” IEEE Electron Device Lett., to be published.
    [87] J. Li, W. R. Donaldson, and T. Y. Hsiang, “Very fast metal-semiconductor-metal ultraviolet photodetectors on GaN with submicro finger width,” IEEE Photonics Technol. Lett., vol. 15, pp. 1141-1143, August 2003.
    [88] M. Mosca, J. L. Reverchon, N. Grandjean, and J. Y. Duboz, “Multilayer (Al,Ga)N structures for solar-blind detection, ” IEEE J. Sel. Top. Quantum Electron., vol. 10, pp. 752-758, 2004.
    [89] S. T. Sheppard, K. Doverspike, W. L. Pribble, S. T. Allen, J. W. Palmour, L. T. Kehias, and T. J. Jenkins, “High-power microwave GaN/AlGaN HEMT’s on semi-insulating silicon carbide substrates,” IEEE Electron Device Lett., vol. 20, pp. 161-163, 1999.
    [90] R. Gaska, Q. Chen, J. Yang, A. Qsinsky, M. Asif Khan, and M. S. Shur, “High-temperature performance of AlGaN/GaN HFET’s on SiC substrates,” IEEE Electron Device Lett., vol. 18, pp. 492-494, 1997.
    [91] R. R. Pelá, C. Caetano, M. Marques, L. G. Ferreira, J. Furthmüller, and L. K. Teles, "Accurate band gaps of AlGaN, InGaN, and AlInN alloys calculations based on LDA-1/2 approach," Appl. Phys. Lett., vol. 98, pp. 151907-151907-3, 2011.
    [92] T. H. Tsai, H. I. Chen, K. W. Lin, C. W. Hung, C. H. Hsu, L. Y. Chen, K. Y. Chu, and W. C. Liu, "Comprehensive study on hydrogen sensing properties of a Pd–AlGaN-based Schottky diode," Int. J. Hydrogen Energ., vol. 33, pp. 2986-2992, 2008.
    [93] C. S. Hsu, H. I. Chen, P. C. Chou, J. K. Liou, C. C. Chen, C. F. Chang, and W. C. Liu, " Hydrogen-sensing properties of a Pd/AlGaN/GaN-based field-effect transistor under a nitrogen ambience," IEEE SENS. J., vol. 13, pp. 1787-1793, 2013.
    [94] E. L. Murphy, and R. H. Good, "Thermionic Emission, Field Emission, and the Transition Region," Phys. Rev., vol. 102, pp. 1464-1473, 1956.
    [95] J. Kuzmík, P. Javorka, M. Marso, and P. Kordos, "Annealing of Schottky contacts deposited on dry etched AlGaN/GaN," Semicond. Sci. Tech., vol. 17, pp. L76-L78, 2002.
    [96] M. Ali, V. Cimalla, V. Lebedev, V. Tilak, P. M. Sandvik, D. W. Merfeld, and O. Ambacher, "A study of hydrogen sensing performance of Pt–GaN Schottky diodes," IEEE Sens J., vol. 6, pp. 1115-1119, 2006.
    [97] S. Y. Chiu, H. W. Huang, T. H. Huang, K. C. Liang, K. P. Liu, J. H. Tsai, and W. S. Lour, "Comprehensive study of Pd/GaN metal–semiconductor–metal hydrogen sensors with symmetrically bi-directional sensing performance," Sens. Actuator B-Chen., vol. 138, pp. 422-427, 2009
    [98] T. H. Tsai, J. R. Huang, K. W. Lin, W. C. Hsu, H. I. Chen, and W. C. Liu, "Improved hydrogen sensing characteristics of a Pt/SiO2/GaN Schottky diode," Sens. Actuators B, vol. 129, pp. 292-302, 2008.
    [99] H. Y. Yu, X. D. Feng, D. Grozea, Z. H. Lu, R. N. S. Sodhi, A. M. Hor ,and H. Aziz, “Surface electronic structure of plasma-treated indium tin oxides,” Appl. Phys. Lett., vol. 78, pp. 2595-2597, 2001.
    [100] H. Kim, N. M. Park, J. S. Jang, S. J. Park, and H. Hwang, “Surface electronic structure of plasma-treated indium tin oxides,” Electrochemical and Solid-State Letters, vol.4, G104-106, 2001.
    [101] L. G. Petersson, H. M. Dannetunn, and I. Lundström, “The water-forming reaction on palladium,” Surf. Sci., vol. 163, pp. 77-100, 1985.
    [102] L. G. Petersson, H. M. Dannetunn, and I. Lundström, “Water production on palladium in hydrogen-oxygen atmospheres,” Surf. Sci., vol. 163, pp. 273-284, 1985.
    [103] T. H. Tsai, H. I. Chen, K. W. Lin, C. W. Hung, C. H. Hsu, L. Y. Chen, K. Y. Chu, and W. C. Liu, "Comprehensive study on hydrogen sensing properties of a Pd-AlGaN-based Schottky diode," Int. J. Hydrog. Energy, vol. 33, pp. 2986-2992, 2008.
    [104] J. R. Huang, W. C. Hsu, H. I. Chen, and W. C. Liu, "Comparative study of hydrogen sensing characteristics of a Pd/GaN Schottky diodes," Sens. Actuator B-chem., vol. 123, pp. 1040-1048, 2007.
    [105] J. Kim, B. P. Gila, C. R. Abernathy, G. Y. Chung, F. Ren, and S. J. Pearton, "Comparison of Pt/GaN and Pt/4H-SiC gas sensors," Solid-State Electron., vol. 47, pp. 1487-1490, 2003.
    [106] G. M. Whitesides, and B. Grzybowski, "Self-assembly at all scales," Science, vol. 295, pp. 2418-2421, 2002.
    [107] H. G. Yang, and H. C. Zeng, "Self-construction of hollow SnO2 octahedra based on two-dimensional aggregation of nanocrystallites," Angew. Chem.-Int. Edit., vol. 43, pp. 5930-5933, 2004.
    [108] D. H. Gracias, J. Tien, T. L. Breen, C. Hsu, and G. M. Whitesides, "Forming electrical networks in three dimensions by self-assembly," Science, vol. 289, pp. 1170-1172, 2000.
    [109] K. Zhu, V. Kuryatkov, B. Borisov, and G. Kipshidze, “Plasma etching of AlN/AlGaInN superlattices for devices fabrication,” Appl. Phys. Lett., vol.81, pp. 4688–4690, 2002.
    [110] J. K. Kim, J. L. Lee, J. W. Lee, H. E. Shin, Y. J. Park, and T. Kim, “Low resistance Pd/Au ohmic contacts to p-type GaN using surface treatment,” Appl. Phys. Lett., vol. 73, pp. 2953-2955, 1998.
    [111] S. H. Kim, H. K. Kim, and T. Y. Seong, “Effect of hydrogen peroxide treatment on the characteristics of Pt Schottky contact on n-type ZnO,” Appl. Phys. Lett., vol. 86, pp. 112101, 2005.
    [112] Ü. Özgür, Ya.I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morkoc, "A comprehensive review of ZnO materials and devices," J. Appl. Phys., vol. 98, pp. 040301-1-103, 2005.
    [113] C. M. Ghimbeu, J. Schoonman, M. Lumbreras, and M. Siadat, "Electrostatic spray deposited zinc oxide films for gas sensor applications," Appl. Surf. Sci., vol. 253 pp 7483–7489, 2007.
    [114] H. J. Lim, D. Y. Lee, and Y. J. Oh, "Gas sensing properties of ZnO thin films prepared by microcontact printing," Sens. Actuators A: Phys., Vol. 125, pp. 405–410, 2006.
    [115] H. M. Lin, S. J. Tzeng, P. J. Hsiau, and W. Li Tsai, "Electrode effects on gas sensing properties of nanocrystalline zinc oxide," Nanostruct. Mater., Vol. 10, pp. 465–477, 1998.
    [116] N. Matsunaga, G. Sakai, K. Shimanoe, and N. Yamazoe, "Diffusion equation-based study of thin film semiconductor gas sensor-response transient," Sens. Actuators B: Chem., vol. 83, pp. 216–221, 2002.
    [117] G. Sakai, N. Matsunaga, K. Shimanoe, and N. Yamazoe, "Theory of gas-diffusion controlled sensitivity for thin film semiconductor gas sensor," Sens. Actuators B: Chem., vol. 80, pp. 125–131, 2001.
    [118] J. H. Jun, J. Yun, K. Cho, I. S. Hwang, J. H. Lee, and S. Kim, "Necked ZnO nanoparticle-based NO2 sensors with high and fast response," Sens. Actuators B: Chem., vol. 140, pp. 412-417, 2009.
    [119] R. J. Silbey and R. A. Alberty, Physical Chemistry, 3rd ed., Wiley, New York, 2001.
    [120] H. I. Chen, Y. I. Chou, and C. K. Hsiung, "Comprehensive study of adsorption kinetics for hydrogen sensing with an electroless-plated Pd-InP Schottky diode," Sens. Actuators B, Vol. 92, pp.6-16, 2003.
    [121] C. W. Hung, H. C. Chang, Y. Y. Tsai, P. H. Lai, S. I. Fu, T. P. Chen, H. I. Chen, and W. C. Liu, "study of a new field-effect resistive hydrogen," IEEE Trans. Electron Devices, vol. 52, pp. 1224-1231, 2007.

    無法下載圖示 校內:2018-07-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE