簡易檢索 / 詳目顯示

研究生: 黃于恩
Huang, Yu-En
論文名稱: 基於多頻譜的CCSDS太空影像修復
Restoration for Damaged CCSDS Image by using Cross Band Information
指導教授: 戴顯權
Tai, Shen-Chuan
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 53
中文關鍵詞: 多頻譜衛星影像錯誤修補
外文關鍵詞: multispectral, satellite image, error concealment
相關次數: 點閱:74下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • CCSDS是用於衛星遙測影像的壓縮標準。當編碼過後的CCSDS衛星影像從太空站傳輸至地面接收站時,檔案可能會因為長距離的無線傳輸或是雜訊而遭到毀損。即使毀損產生的錯誤僅有單一位元,在解碼過後其造成的影響可能使得大範圍的影像破損。對於這樣的狀況,本論文提出了修補的辦法。福衛二號衛星擁有拍攝多頻譜影像的感測器,不同頻譜間的資訊是做為修復破損影像重要的資訊。雖然多頻譜間的遙測影像在亮度上可能有所差異,但是在結構上還是能保有一定的相似程度。本論文提出的方法即是藉由計算多頻譜影像之間的關係來修復破損的衛星影像。在實驗結果中,修復的衛星影像也顯現了良好的視覺品質。

    The CCSDS standard is a format for satellite remote sensing. When the coded CCSDS image has been transmitted from space to ground, the data can be damaged and distorted, because of the long distance the signal has travelled. Even a single bit error can cause significant damage after decoding and result in low availability for further applications. A scheme is proposed to deal with such circumstance. The FORMOSAT-2 satellite is capable of capturing multispectral images which are essential information for restoring the corrupted images. Though the brightness of different band images may not be the same, the structures of these images remain similar to each others. A weighted modified mapping function is generated by the correlation between different band images to restore the damaged image. The experimental results show that the proposed method is capable of reconstructing the error image with great visual quality.

    摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Overview of remote sensing . . . . . . . . . . . . . . . . . . . . . . . . 1 2 Background and Related Works . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1 Format of CCSDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 Multispectral Image of FORMOSAT-2 . . . . . . . . . . . . . . . . . . 8 2.3 Image Registration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3.1 Featured-based Image Registration . . . . . . . . . . . . . . . . 11 2.3.2 Area-based Image Registration . . . . . . . . . . . . . . . . . . 12 2.4 Detection of the Error . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.5 Error Concealment . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.5.1 Related Work of Error Concealment . . . . . . . . . . . . . . . . 14 3 The Proposed Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.1 Template matching Registration . . . . . . . . . . . . . . . . . . . . . . 17 3.2 Detection of the Error . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.3 Error Concealment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.3.1 Mapping Function . . . . . . . . . . . . . . . . . . . . . . . . …… 19 3.3.2 Choice of Referenced Image . . . . . . . . . . . . . . . . . . . . 23 3.3.3 Distance-based Weighted Coefficients . . . . . . . . . . . . . . . 24 3.3.4 Weighted Modified Mapping Function . . . . . . . . . . . . . . . 25 4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.1 Selection of Referenced Images . . . . . . . . . . . . . . . . . . . . . . . 30 4.2 Results of Distance-based Coefficients . . . . . . . . . . . . . . . . . . . 32 4.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 5 Conclusions and Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . 50 5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 5.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

    [1] [Online]. Available: http://www.cpc.unc.edu/
    [2] [Online]. Available: http://en.wikipedia.org/wiki/Corner detection
    [3] J. Chen, X. Zhu, J. E.Vogelmann, F. Gao, and S. Jin, A simple and effective method for filling gaps in Lansat ETM+ slc-off images," in Remote Sensing of Environment, 2011, pp. 1053-1064.
    [4] T. T. Cheung, C. R.S., and L. K.B., DC error correction for image transmission over wireless channels," Wireless Communications and Networking Confernce, 2000. WCNC. 2000 IEEE, vol. 3, pp. 1237 - 1242, 23 Sep 2000-28 Sep 2000.
    [5] Draft CCSDS recommended standard for image data compression, Consultative Committee for Space Data Systems Std.
    [6] L. Ma, Y. Sun, N. Feng, and Z. Liu., Image fast template matching algorithm based on projection and sequential similarity detecting," in Intelligent Information Hiding and Multimedia Signal Processing, 2009. IIH-MSP '09. Fifth International Conference on, 2009, pp. 957 - 960.
    [7] R. F. Mansour, A robust method for arabic car plates recognition and matching using chain code," in American Journal of Computational and Applied Mathematics, 2012, pp. 105-111.
    [8] R. E. W. Rafael C. Gonzalez, Digital Image Processing 3rd Edition. PEARSON, 2007.
    [9] R. Ren, S. Guo, L. Gu, and H. Wang, Automatic thick cloud removal for MODIS remote sensing imagery," in Information Engineering and Computer Science, 2009. ICIECS 2009. International Conference on, 19-20 Dec. 2009, pp. 1-4.
    [10] D. M. Shuai Xing, Qing Xu, Multi-sensor satellite image sub-pixel registration," in Image and Graphics, 2007. ICIG 2007. Fourth International Conference, 2007, pp. 713 - 718.
    [11] X. Zhu, F. Gao, D. Liu, and J. Chen, A modified neighborhood similar pixel interpolator approach for removing thick clouds in landsat images," in Geoscience
    and Remote Sensing Letters, IEEE, May 2012, pp. 521 - 525.

    無法下載圖示 校內:2019-08-04公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE