簡易檢索 / 詳目顯示

研究生: 陳威誌
Chen, Wei-Chih
論文名稱: 以田口方法改善靜電式晶圓座晶圓感測穩定度研究
Using Taguchi Method to Improve the Wafer Sense Stability of Electrostatic Chuck
指導教授: 趙隆山
Chao, Long-Sun
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 66
中文關鍵詞: 靜電式晶圓座平行板電容器晶圓感測田口方法
外文關鍵詞: Electrostatic chuck, parallel plate capacitor, wafer sense, Taguchi method
相關次數: 點閱:54下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 靜電式晶圓座(Electrostatic Chuck , E-chuck)隨著半導體製程的發展,已經成為將晶圓固定在真空腔體中的重要載具,有別於傳統的機械式晶圓固定座(Mechanical Chuck)有邊緣損失和晶圓表面變形的問題,或者是真空式晶圓固定座(Vacuum Chuck)在真空環境下無法利用壓力差達到有效的吸附,靜電式晶圓座可以讓晶圓平整的貼附在晶圓座表面,除了提供更穩定的吸附力以外也帶來更好的溫度控制。
    為了在製程中判斷E-chuck是否有完整吸附,會利用平行板電容器原理,以晶圓和E-chuck所組成的兩個平行導板,因為彼此的距離變化而影響電容大小作為判斷,當晶圓被吸附時,與E-chuck的距離最短,得到的電容值最大;相反地,晶圓放置在E-chuck上,或者被釋放之後,因為支撐銷(lift pin)的高度提供額外的間距,讓距離變大所以電容最小,在這兩種間距內所形成的電容值變化,可經由訊號放大的邏輯電路計算,得知吸附(clamp)與釋放(unclamp)的晶圓感測值(wafer sense),用量化方式判定E-chuck是否有成功將晶圓穩定吸附和完全釋放,假設出現了在吸附與釋放之間的晶圓感測值,則可以判定晶圓與E-chuck間距被殘留電荷或其他參數影響造成釋放不完全,則可以提前停機確認相關的運作機構,減少異常發生。
    本研究以田口方法探討影響E-chuck晶圓感測值的各項因子,來穩定E-chuck 吸附以及釋放的晶圓感測值,並以吸附和釋放之間的晶圓感測值差異(wafer-sense gap)作為檢驗依據,當晶圓感測值差異越大就表示E-chuck順利完成吸附和釋放動作,透過田口實驗結果得知,E-chuck的支撐銷(lift pin)與支撐銷組件內部的支撐彈簧所提供的彈簧力為主要影響晶圓感測值的關鍵因子。隨著彈簧力和支撐銷高度的增加,晶圓感測值差異會越明顯;並且由實驗中得知,在支撐銷高度為0.45 mm的條件下,隨著彈簧力的增加,晶圓感測值差異會明顯加大,但是在相同的彈簧力下,隨著支撐銷高度的增高對晶圓感測值差異雖然有增加的效果,而增加的幅度沒有跟彈簧力一樣明顯,代表著彈簧力所帶來的增益比支撐銷高度還大,想要快速增加晶圓感測值差異的話,可以先把彈簧力增加到45 gw以上,再用支撐銷高度微調差異的範圍。以本實驗驗證最佳化的支撐銷長度與彈簧力組合而得出,當支撐銷的高度到達0.65 mm且搭配的彈簧力為48 gw時,就可以達到最大的晶圓感測值差異,不僅比原始參數的配置增加了一倍,並且在後續的30組E-chuck的測試結果中,符合95%信心水準的重複性以及穩定性,不但改善了E-chuck在吸附和釋放晶圓的一致性,也強化了機台於自動化過程中的辨識度依據。

    Electrostatic chuck (E-chuck) has become an essential carrier for fixing wafers in vacuum process with the advanced semiconductor fabrication. E-chuck can provide more flat adhesion compared with mechanical chucks and vacuum chucks. So, the better temperature control is offered.
    To determine the completeness of adhesion of the E-chuck during process, the parallel plate capacitor principle is utilized. Varied capacitance values formed by the wafer status on E-chuck surface are calculated. The distance between the wafer and the E-chuck becomes the shortest when the wafer is clamped, resulting in the highest capacitance and wafer sensing. Conversely, the lowest capacitance and wafer sense are obtained when the wafer is unclamped. The clamped and unclamped wafer senses are used to determine whether the E-chuck has successfully adhered to the wafer. If any wafer sense is detected between the clamped and unclamped states, the distance between the wafer and the E-chuck may be shortened by residual charge or other factors.
    This study employs the Taguchi method to verify multiple factors affecting the wafer senses. The aim is to stabilize the clamp and unclamp wafer senses and prevent abnormalities in wafer loading and unloading. The difference between clamp and unclamp wafer sense is called wafer-sense gap. The larger the wafer-sense gap, the smoother the adhesion or release function of the E-chuck.
    It is found that the spring force and the lift pin height are the primary factors influencing the wafer-sense gap through Taguchi experimental methods. The factor effect of spring force is more significant than that of the lift pin height. The spring force can make the wafer-sense gap more obvious when it rises to 45 gw. The wafer-sense gap can be quickly increased by first increasing the spring force to above 45 gw, then fine-tuning the range of the wafer-sense gap using the lift pin height. Based on this experiment, when the lift pin height reaches 0.65 mm with a spring force of 48 gw, the maximum wafer- sense gap can be achieved. This setup not only doubles the average wafer-sense gap compared to the original parameters but also meets the 95% confidence level. High reproducibility and stability are also shown in the following test results with 30 sets of E-chucks. This improvement enhances the consistency of the wafer adhesion and release function of the E-chuck and strengthens the basis for recognition in automated processes.

    中文摘要 I Abstract III 誌謝 IX 表目錄 XIII 圖目錄 XIV 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 2 1.3 文獻回顧 3 第二章 離子植入機與靜電式晶圓座介紹 5 2.1 離子植入機 5 2.1.1 設施模組(Facility Module) 5 2.1.2 大氣傳送模組(Atmospheric Transfer Module, ATM) 6 2.1.3 真空傳送模組(Vacuum Transfer Module, VTM) 7 2.1.4 離子源模組(Source Module) 7 2.1.5 終端模組(Terminal Module) 9 2.1.6 製程模組(Process Module) 12 2.2 靜電式晶圓座(electrostatic chuck, E-chuck)[18, 19] 14 2.2.1 靜電式晶圓座基本結構 15 2.2.2 靜電吸附原理 15 2.2.3 靜電式晶圓座種類 16 第三章 實驗方法與設備 22 3.1 晶圓感測(wafer sensing) 22 3.2 E-chuck測試模組 25 3.3 JADEVER Sky-C-600T計數天平 26 3.4 Keyence VR-6200表面3D輪廓量測儀 26 3.5 Oxford CMI243膜厚計 27 3.6 HIOKI 3455高電壓絕緣電阻計 28 3.7 Fluke 289工業記錄萬用電表 29 3.8 熱風烤箱 30 3.9 實驗控制因子量測流程 31 第四章 實驗設計與結果討論 33 4.1 實驗規劃 33 4.2 田口實驗設計法[28] 33 4.2.1 固定因子選定 34 4.2.2 控制因子選定 34 4.3 田口實驗 35 4.4 選出關鍵因子進行效果驗證 40 4.5 效果驗證結果與討論 40 4.5.1 彈簧力與支撐銷高度關鍵因子特性 41 4.5.2 預測S/N比與原始S/N比差異比較 42 4.5.3 最佳化與原始參數晶圓感測值差異值比較 42 4.5.4 最佳化參數批量驗證結果 43 第五章 結論與未來展望 45 5.1 結論 45 5.2 未來展望 45 參考文獻 46

    [1] G. A. Wardly, "Electrostatic Wafer Chuck for Electron Beam Microfabrication," Review of Scientific Instruments, vol. 44, no. 10, pp. 1506-1509, 1973.
    [2] 賴建裕, "晶圓與靜電吸盤之熱傳分析," 國立台灣大學應用力學研究所, 2003.
    [3] P. L. J. Reimund, K. Becker, D. St. Angelo "Electrostatic Clamp Performance," IEEE Ion Implantation Technology Proceedings, 1998 International Conference, vol. 1, pp. 280-283, 1998.
    [4] Advanced Energy, "The Electrostatic Semiconductor Wafer Clamping/Chucking System(ESC).", https://www.advancedenergy.com/getmedia/0765eec8-b47d-427a-8a36-bfb8af5351f7/en-hv-amplifier-electrostatic-semiconductor-wafer-system.pdf.
    [5] S. M. Huang, A. L. Stott, R. G. Green, and M. S. Beck, "Electronic transducers for industrial measurement of low value capacitances," Journal of Physics E: Scientific Instruments, vol. 21, no. 3, pp. 242-250, 1988.
    [6] S. Kanno and T. Usui, "Generation mechanism of residual clamping force in a bipolar electrostatic chuck," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, vol. 21, no. 6, pp. 2371-2377, 2003.
    [7] K. Wang, Y. Lu, J. Cheng, and L. Ji, "Prediction of residual clamping force for Coulomb type and Johnsen–Rahbek type of bipolar electrostatic chucks," Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol. 233, no. 1, pp. 302-312, 2018.
    [8] D. R. Wright, L. Chen, P. Federlin, and K. Forbes, "Manufacturing issues of electrostatic chucks," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, vol. 13, no. 4, pp. 1910-1916, 1995.
    [9] F. Kazutoshi Asano, IEEE, Fumikazu Hatakeyama, and Kyoko Yatsuzuka, Member, IEEE, "Fundamental Study of an Electrostatic Chuck for Silicon Wafer Handling," IEEE Industry Applications Conference, vol.38, no.3, pp.840 845, 2002.
    [10] M. Kyoko Yatsuzuka, IEEE, Fumikazu Hatakeyama, Kazutoshi Asano, Senior Member, IEEE, and and S. Aonuma, "Fundamental Characteristics of Electrostatic Wafer Chuck with Insulating Sealant," IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, VOL. 36, NO. 2, 2000.
    [11] T. K. T. Watanabe, "Effect of Additives on the Electrostatic Force of Alumina Electrostatic Chucks," Journal of the Ceramic Society of Japan 100 [1] 1-6, 1992.
    [12] T. K. a. C. N. Toshiya Watanabe, "Relationship between Electrical Resistivity and Electrostatic Force of Alumina Electrostatic Chuck," Japanese Journal of Applied Physics, Volume 32, Number 2R, 1993.
    [13] M. Deguchi, "A simple method for detecting very small changes in capacitance or inductance," Microelectronics Journal, vol. 101, p. 104802, 2020.
    [14] A. Ashrafi and H. Golnabi, "A high precision method for measuring very small capacitance changes," Review of Scientific Instruments, vol. 70, no. 8, pp. 3483-3487, 1999.
    [15] W. Xingkuo et al., "Finite element analysis on factors influencing the clamping force in an electrostatic chuck," Journal of Semiconductors, vol. 35, p. 094011, 2014.
    [16] "弗萊明左手定則Fleming’s left hand rule." https://www.bbc.co.uk/bitesize/guides/zc3dxfr/revision/3
    [17] D. R. Wright, D. C. Hartman, U. C. Sridharan, M. Kent, T. Jasinski, and S. Kang, "Low temperature etch chuck: Modeling and experimental results of heat transfer and wafer temperature," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 10, no. 4, pp. 1065-1070, 1992.
    [18] 孫詩壯與趙晉榮, "庫倫型静電卡盤吸附力受電極結構及晶圓氧化層影響的研究," 真空科學與技術學報第43卷第8期, 2023.
    [19] 張段芹, 褚金奎與劉建秀, "微加工工藝製作的静电吸片及其切向吸附力," 微纳電子技術第51卷第2期, 2014.
    [20] G. Kalkowski, S. Risse, S. Müller, and G. Harnisch, "Electrostatic chuck for EUV masks," Microelectronic Engineering, vol. 83, no. 4-9, pp. 714-717, 2006.
    [21] 陳韋閔, "電極電壓對靜電式晶圓座(ESC)晶圓釋放的影響研究," 國立中興大學電機工程學系, 2013.
    [22] G. I. Shim and H. Sugai, "Dechuck Operation of Coulomb Type and Johnsen-Rahbek Type of Electrostatic Chuck Used in Plasma Processing," Plasma and Fusion Research, vol. 3, pp. 051-051, 2008.
    [23] L. D. Hartsough, "Electrostatic wafer holding." Solid State Technology, vol. 36, no. 1, pp. 87-90, 1993.
    [24] S. Q. a. A. McTeer, "Wafer dependence of Johnsen–Rahbek type electrostatic chuck for semiconductor process," JOURNAL OF APPLIED PHYSICS 102, 064901, 2007.
    [25] Y. Sun, J. Cheng, Y. Lu, Y. Hou, and L. Ji, "Design space of electrostatic chuck in etching chamber," Journal of Semiconductors, vol. 36, no. 8, 2015.
    [26] B. F. Peter Andrews, John Dunklee, "Chuck With Intergrated Wafer Support," U.S. Patent US 7,688,091 B2, 2010.
    [27] T. W. Yoon, S. I. Cho, M. Choi, and S. J. Hong, "Heat transfer mechanism of electrostatic chuck surface and wafer backside to improve wafer temperature uniformity," Journal of Vacuum Science & Technology B, vol. 41, no. 4, 2023.
    [28] 李輝煌, 田口方法-品質設計的原理與實務. 高立圖書有限公司, 2004.
    [29] 菅原利文, 天滿康之, 林基樹與辰己良昭, "靜電吸盤裝置及其控制方法," 中華民國專利 201403742, 2013.
    [30] K. J. Jeong, S. Spoutai, S. H. Choi, T. Y. Cho, and H. G. Chun, "A study on the fabrication and characterization of alumina electrostatic chuck for silicon wafer processing," in Proceedings Third Russian-Korean International Symposium on Science and Technology. KORUS'99 (Cat. No.99EX362), vol. 2, pp. 532-535 vol.2, 1999.

    無法下載圖示 校內:2029-08-12公開
    校外:2029-08-12公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE