| 研究生: |
張翰青 chang, Han-Ching |
|---|---|
| 論文名稱: |
以重金屬廢水污泥產生之鐵氧磁體高溫去除H2S之吸收特性 |
| 指導教授: |
朱信
Chu, Hsin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 128 |
| 中文關鍵詞: | 硫化氫 、乾式除硫 、鐵氧磁體 |
| 外文關鍵詞: | desulfurization, IGCC |
| 相關次數: | 點閱:66 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著世界人口的增加與科技的需求,加速了石油、天然氣等能源的消耗,如何利用醞藏最豐富的煤炭能源,將是未來能源發展的重要環節。由於其中煤炭氣化複循環發電技術(IGCC)無論在技術成熟性、能源效率及環保性能都是最卓越,因此將會是未來的發電主流之ㄧ。現在商業運轉之大型煤炭氣化複循環發電機組(IGCC)皆使用溼式商業化之除硫程序。然而溼式除硫必須用水來冷卻煤氣,使系統熱效率降低,為提高熱效率以降低發電及環保成本,世界各國皆在研發尋找高溫下乾式除硫方法。
本研究以重金屬廢水產生之鐵氧磁體作為高溫脫硫的吸收劑,可以兼具資源回收再利用及淨潔材料的目的,研究成果分為以下幾點探討:
1.鐵氧磁體吸收劑於多次脫硫-再生後利用率將有隨著次數增加而減少的趨勢,推測利用率降低與BET表面積減少和硫份的累積所造成。
2.以不同操作參數來觀察鐵氧磁體吸收劑利用率改變的情形,發現一氧化碳濃度增加,氫氣濃度減少會使利用率提高,此現象與water-shift reaction 有關。
3.氧化/還原氣氛之熱重分析,我們觀察了鐵氧磁體吸收劑於脫硫時的還原氣氛下與再生時的氧化氣氛下的重量變化。還原氣氛下,鐵氧磁體高溫下會被還原為低氧化數的氧化鐵,甚至元素鐵;氧化氣氛,發現有部分之脫硫後鐵氧磁體會先轉為FeSO4,之後才繼續氧化成為鐵氧磁體。
4.經由進行XPS的不同深度分析,我們發現脫硫後之鐵氧磁體外部與內部有明顯的不同,外部較趨向於氧化態,有硫酸跟及亞硫酸跟的鍵結存在;內部則趨向還原態。
5.由動力模擬研究發現,第一型衰退模式及第二型衰退模式皆能模擬脫硫反應。
The residents’ environmental consciousness is rising more and more by time. In order to meet this demand, how to use the most abundant energy of coal as well as improving the efficiency of energy production technologies is being carried out. IGCC(Integrated Gasification Combined Cycle) is one of the ideal method to solve environmental and economic problem by using fossil fuels, especially coal. Hot gas desulfurization is crucial issue in the development of the IGCC system. Nowadays, all commercial IGCC power plants utilize wet desulfurization processes to remove H2S from hot coal gas. However, coal gas was cooled by the wet processes would be decrease the thermal efficiency of the system significantly. Therefore, high temperature removal of H2S techniques is the targets for the researchers in this field.
Desulfurization of hot coal gas using the sludge from Ferrite Process sorbent in a fixed bed reactor was conducted in this study. It can be one kind of clean and recycle materials. The explanation of results can be divided into five major parts.
1.After multi-cycle desulfurization ferrite sorbent’s utilization was decayed as time rising. It may be concerned with decrease of BET surface area and accumulate of sulfur.
2.The effects of operating factors, such as CO inlet concentration, H2 inlet concentration and temperature on the removal of H2S were performed. The results show that the sorbent utilization increases with the CO concentration and decrease with the H2 concentration. This can be explained through the water-shift reaction.
3.Thermogravimmetry analysis under oxidation/reduction condition. Under reduction condition, ferrite sorbent will be reducted to low-activity iron oxide even elemental iron. Under oxidation condition, some part of sulfurated ferrite sorbent will be oxidized to FeSO4. It will be continuing oxidized to ferrite sorbent.
4.In the XPS analysis for surface and deeper depth, we can find there was obvious difference for sulfurated ferrite sorbent. Surface structure tends to oxidation state and deeper structure tends to reduction state.
5.In the operating range of this study, we can find that the both deactivation model type I and deactivation model II can simulate the desulfurization reaction.
1.王志成、李福文,「硫化氫新處理技術:SULFA CHECK與現行方法之比較」,工業污染防治,第30期,1989,197-202。
2.台灣電力公司,「煤炭氣化技術及淨化技術之研究」,台灣電力公司研究發展專題,1994,p.38-39。
3.朱信、曾明宗,「煤炭企劃複循環發電機組可行性之研究」,工業技術研究院能源與資源研究所、台灣電力公司電力綜合研究所研究計畫期末報告,1991,p.26-29。
4.宋宏凱,“電鍍廢水鐵氧磁體化及其安定性之研究”,成功大學資源工程碩士論文,1994。
5.汪建民,「材料分析」,中國材料科學學會,1998。
6.林曉菁,「以鹼性添著碳處理硫化氫與甲硫醇效率影響因子之研究」,國立成功大學環境工程學系碩士論文,1996。
7.徐恆文,「煤炭氣化技術發展趨勢」,燃煤新技術研討會,2001。
8.陳文泉,“重金屬廢水鐵氧磁體法處理之基礎研究”,國立成功大學礦冶及材料科學研究所,碩士論文,1992。
9.望熙榮(譯),Cooper, C. D., Alley, F. C.,”空氣污染防治”,中央圖書,1998。
10.楊建民,”以酒石酸鹽法低溫(<500oC)合成超微粒鋅鐵氧磁體粉末之反應生成機構研究,國立成功大學資源工程研究所,博士論文,2001。
11.孫逸民,「儀器分析」,全威圖書,1997。
12.MSDS資料庫http://www.iosh.gov.tw/frame.htm。
13.國立成功大學西文資料庫,理工學科資料庫,參考工具書型,「POWDER DIFFRATION FILE」,International Cente r for Diffration Data出版,2004,http://cdnet.lib.ncku.edu.tw/doc/pdf.htm
14.劉陽秋,「燒煤發電之先進技術」,台電工程月刊,,第571期1-8, 1995。
15.Abbasian, J., Slimane, R. B., “A regenerable copper-based sorbent for H2S removal coal gases”, Ind Eng Chem Res, 1998, 37, 2775-2782.
16.Alonso, L., Palacios, J. M., “Performance and Recovering of a Zn-doped Manganese Oxide as a Regenerable Sorbent for Hot Coal Gas Desulfurization”, Energy & Fuel, 2002, 16(6), 1550-1556.
17.Atimtay, A. T., “Cleaner Energy Production with Integrated Gasification Combined Cycle Systems and Use of Metal Oxide Sorbents for H2S Cleanup from Coal Gas”, Clean Products and Processes, 2001, 197-208.
18.Ayala, R. E. and Marsh, D. W., ” Characterization and Long-Range Reactivity of Zinc Ferrite in High-Temperature Desulfurization Processed“, Ind. Eng. Chem. Res. 1991,30, 55-60.
19.Bakker, W. J. W., Kapteijn, F., Moulijn, J. A., “A High Capacity Manganese-based Sorbent for Regenerative High Temperature Desulfurization with Direct Sulfur Production Conceptual Process Application to Coal Gas Cleaning”, Chemical Engineering Journal, 2003, 96, 223-235.
20.Boursiquot, S., Mullet, M., Abdelmoula, M., “The dry oxidation of tetragonal FeS1-x mackinawite”, Phys. Chem. Minerals, 2001, 28,600-611.
21.Benesi, H. A., Bonner, R. V., Lee, C. F., “Determination of Pore Colume of Solid Catalyst”, Analytical Chemistry, 1995, 27,1963-2965.
22.Cuong, P. H., Estournes, C., Heinrich, B., Ledoux, M. J., “High Temperature H2S Removal over High Specific Surface Area β-SiC Supported Iron Oxide Sorbent-part 2 Perparation and Characterization”, J. Chem. Soc. Faraday Trans.,1998, 94, 443-450.
23.de Boer, J. H., Lippens, B. C., Linsen, B. G., Broek-hoff, J. C. P., van den Heuval, A., Osinga, Th. J., “The t-curve of Multimolecular N2-adsorption”, Journal of Colloid and Interface Scienc, , 1966, 21, 405-414 .
24.Focht, G. D., Ranade, P. V., Harrison, D. P., “High Temperature Desulfurization Using Zinc Ferrite:Reduction and Sulfidation Kinetics”, Chem Eng Sci, 1988, 43(11), 3005-3013.
25.Focht, G. D., Ranade, P. V., Harrison, D. P., “High Temperature Desulfurization Using Zinc Ferrite:Solid Structural Property Changes”, Chem Eng Sci, 1989, 44(2), 215-224.
26.Garcy ’a, E., Cilleruelo, C., Ibarra, J.,*, Miguel Pineda, and Jose’ M. Palacios,” Kinetic Study of High-Temperature Removal of H2S by Novel Metal Oxide Sorbents”, Ind. Eng. Chem. Res. 1997, 36, 846-853.
27.Hiemenz, P. C., “Principles of Colloid and Surface Chemistry”, M. Dekker, 1986
28.Inkley, F. A., Everett, D. H., Stone, F. S., “Structure and Properties of Porous Materials”, Academic, New York, 1958, 124.
29.Jun, H. K., Lee, T. J., Kim, J. C.,“Role of Iron Oxide in the Promotion of Zn-Ti-Based Desulfurization Sorbents during Regeneration at Middle Temperatures”, Ind. Eng. Chem. Res. 2002, 41, 4733-4738.
30.Jun, H. K., Lee, T. J., Ryu, S. O., Kim, J. C., “A Study of Zn—Ti-based H2S Removal Sorbents Promoted with Cobalt Oxides”, Ind. Eng. Chem. Res., 2001, 40(16), 3547-3556.
31.Kobayashi, M., Shirai, H.and Nunokawa, M., ” Estimation of Multiple-Cycle Desulfurization Performance for Extremely Low-Concentration Sulfur Removal with Sorbent Containing Zinc Ferrite-Silicon Dioxide Composite Powder”, Energy& Fuels 2002, 16, 1378-1386.
32.Kobayashi, M., Shirai, H.and Nunokawa, M., ”Measurements of Sulfur Capacity Proportional to Zinc Sulfidation on Sorbent Containing Zinc Ferrite-Silica Composite Powder in Pressurized Coal Gas”, Ind. Eng. Chem. Res. 2002, 41, 2903-2909.
33.Kobayashi, M., “Reduction and Sulfidation Kinetics of Cerium Oxide and Cu-Modified Cerium Oxide”, Ind. Eng. Chem. Res. 2002, 41, 3115-3123
34.Konttinen, J., Mojtahedi, W., “Gasifier Gas Desulfurization at High Temperature and Pressure”, Repr Kemia-Kemi, 20, 847-851, 1993
35.Kyotani, T., Kawashima, H., Tomita, A., “High Temperature Desulfurization Reaction with Cu-Containing Sorbents”, Environ. Sci. Technol., 1989, 23(2):218-223.
36.Li, Z., Flytzani-Stephanopoulos, M., “Cu-Cr-O and Cu-Ce-O Regenerable Oxide Sorbents for Hot Gas Desulfurization”, Ind Eng Chem Res , 1997, 36(1), 187-196.
37.Lew, S., K. Jothimurugesan, M.Flytzani-Stephanopoulo, “High Temperature H2S Removal from Fuel Gases by Regenerable Zinc Oxide- Titanate Dioxide Sorbents”, Ind.Eng.Chem.Res., 1992, 31, 1890-1899.
38.Lowell, S., Shields, J. E., “Powder Surface Area and Porosity”, Chapman and Hall, 1984.
39.Mikhlin, Y.L., Kuknlinskiy, A. V., Pavlenko, N. I., “Spectroscopic and XRD studies of the air degradation of acid-reacted pyrrhotites”, Geochimica et Cosmochimica Acta, 2002, Vol. 66, No. 23, 4057–4067.
40.Mojtahedi, W., Abbasian, J., “H2S Removal from Coal Gas at Elevated Temperature and Pressure in Fluidized Bed with Zinc Titanate Sorbents, Part 1:cyclic tests”, Energy Fuels, 1995, 9:782-801.
41.Mullet, M., Boursiquot, S., Abdelmoula, M., ” Surface chemistry and structural properties of mackinawite prepared by reaction of sulfide ions with metallic iron”, Geochimica et Cosmochimica Acta, 2002, Vol. 66, No. 5, 829–836.
42.Mycroft, J. R., ”X-ray photoelectron and Auger electron spectroscopy of air-oxidized pyrrhotite Distribution of oxidized species with depth”, Geochimica et Cosmochimica Acta, 1995, Vol. 59, No. 4, 721–733.
43.Nagl, G., “Controlling H2S emission”, Chemical Engineering, 1997, 125-131.
44.Niemantsverdriet, J. W., “Spectroscopy in Catalysis”, Weinheim, 1993.
45.Patrick, V., Gavalas, R., Flyzani-Stephanopoulos, M., Jothimurugisan, K., “High Temperature Sulfidation -Regeneration of CuO-Al2O3 Sorbent”, Ind. Eng. Chem. Res., 1989, 28, .931-940.
46.Pineda, M., Palacios, J. M., Cilleruelo, C., Garcia, E., Ibarra, J. V., “Characterization of Zinc Oxide and Zinc Ferrite Doped with Ti or Cu as Sorbents for Hot Gas Desulfurization”, Appl Surf Sci, 1997, 119:1-10.
47.Pineda, M., Fierro, J.L.G., Palacios, J.M., ”Kinetic behaviour and reactivity of zinc ferrites for hot gas desulphurization”, journal of materials scence 30 (1995) 6171-6178
48.Pratt, A. R., Nesbitt, H. W., Mycroft, J. R., “The increased reactivity of pyrrhotite and magnetite phases in sulphide mine tailings”, Journal of Geochemical Expldration,1996 ,56, 1-11.
49.Poston, J. A., “A Reduction in the Spalling of Zinc Titanate Desulfurization Sorbents through Addition of Lanthanum Oxide”, Ind Eng Chem Res, 1996, 35(3):875-882.
50.Rajagopalan, V. and Amiridis, M. D., “Hot Coal Gas Desulfurization by Perovskite-type Sorbents”, Ind. Eng. Chem. Res. 1999, 38, 3886-3891.
51.Sasaoka, E., Iwamoto, Y., Hirano, S., “Soot Formation over Zinc Ferrite High-Temperature Desulfurization Sorbent”,Energy & Fuels; 1995, 9(2), 344-353.
52.Sasaoka, E., Sakamoto, M., Ichio, T., Kasaoka, S., Sakata, Y.,“Reactivity and Durability of Iron Oxide High Temperature Desulfurization Sorbents”, Energy & Fuels 1993, 7, 632-638
53.Sasaoka, E., Sakamoto, M., Ichio, M., Kasaoka, S.,Sakata, Y., “Role of H2O in Oxidation of Spent High Temperature Desulfurization Sorbent Fe2O3 and CuO in the Presence of O2”, Ind. Eng. Chem. Res. , 2001, Vol. 40, No. 11.
54.Satterfield, C. N., “Heterogeneous Catalysis in Industrial Practice 2E”, McGraw-Hill, Inc, 1991.
55.Schaack, J. P., Chan, F.,”H2S Scavenginh-1”, Oil & Gas Journal, 1989, 125-131.
56.Siriwardane, R. V., Gardenr, T., Poston, J. A.Jr, and Fisher, E. P., “Spectroscopic Characterization of Nickle Containing Desulfurization Sorbents”, Ind. Eng. Chem. Res. 2000, 39, 1106-1110.
57.Skinner, W.M., Nesbitt, H. W.and Pratt, A. R., “XPS identification of bulk hole defects and itinerant Fe 3d electrons in natural troilite (FeS)”, Geochemica et Cosmochimica Acta, 2004, Vol. 68, No. 10, 2259-2263.
58.Skoog, D. A., Holler, F. J., Nieman, T. A., “Principles of Instaumental Analysis 5E”, Saunders College Publishing, 1998.
59.Swisher, J. H., Yang, J., Gupta, R. P., “Attirtion-resistant Zinc Titanate Sorbent for Sulfur”, Ind. Eng. Chem. Res., 1995, 34:4463-4471.
60.Thomas, J.E., Skinner, W. M., Smart, R. C. “A comparison of the dissolution behavior of troilite with other iron(II) sulfides; implications of structure”, Geochimica et Cosmochimica Acta, 2003, Vol. 67, No. 5, 831–843.
61.Van der Ham, A. G. J., Vanderbosch, R. H., Prins, W., “Survey of Desulfurization Processes for Coal Gas” In:Atimtay, A. A., Harrison, D. P.(eds), “Desulfurization of Hot Coal Gas”, NATO ASI Ser 1996, 42, 117-136.
62.Westmoreland, P.R.,Harrison, D.P., “Evaluation of Candidate Solids for High-Temperature Desulfurization of Low-Btu Gasses”, Envi. Sci. &Tech., 1976, 10(7), 659-661.
63.Womes, M., Karnatak, R. C., Esteva, J. M., Lefebvre, I., Allan, G., Olivier-Fourcade, J., Jumas, J. C., “Electronic Structures of FeS and FeS2: X-Ray Absorption Spectorscopy and Band Structure Calculations”, J. Phys. Chem Solids, 1997, Vol. 58, No. 2, 345~352.
64.Yasyerli, S., Dogu, G., Dogu, T., “Activities of Copper Oxides and Cu-V and Cu-Mo Mixed Oxides for H2S Removal in the Presence and Absence of Hydrogen and Prediction of Deactivation Model”, Ind. Eng. Chem. Res., 2001, 40(23):5206-5214.
65.Zaho, J., Huang,J, Zhang, J.,Wang, Y., “Influence of Fly Ash on High Temperature Desulfurization Using Iron Oxide Sorbent”, Energy & Fuel, 2002, 16(6), 1585-1590.