| 研究生: |
葉韋廷 Yeh, Wei-Ting |
|---|---|
| 論文名稱: |
拉蓋爾高斯光束中的粒子軌跡模擬研究 Simulation study of particle trajectory in Laguerre-Gaussian Beams |
| 指導教授: |
藍永強
Lan, Yung-Chiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 82 |
| 中文關鍵詞: | 渦漩光束 、軌道角動量 、拉蓋爾高斯光束 、粒子軌跡 |
| 外文關鍵詞: | Vortex beams, Orbital angular momentum, Laguerre-Gaussian beam, Particle trajectory |
| 相關次數: | 點閱:43 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
渦漩光束具有特殊的螺旋相位結構,使其可以攜帶軌道角動量,而拉蓋爾高斯光束就是一種可以攜帶軌道角動量的渦漩光束。這種光束與物質相互作用時,其光學角動量可以傳遞到物質上,導致物質的旋轉或其他動態行為。在現今,光學渦漩已廣泛應用於許多領域。例如,在生物物理領域中,渦漩光束可以施加扭矩,使粒子在光場中旋轉,從而捕獲和控制微小粒子。此外,渦漩光束的螺旋相位結構能提高光學成像的分辨率和對比度,有助於超分辨顯微成像技術的發展。由於渦漩光束能攜帶較高的軌道角動量,它成為多維度量子信息編碼和通信的理想選擇。
本研究使用COMSOL軟體進行模擬一拉蓋爾高斯光束,並且在其中心打入一束電子束,研究在不同條件下的拉蓋爾高斯光束對電子造成的影響。
本研究所改變的條件有在通過改變不同m值下改變電場強度、電子初始動能、改變電子入射孔徑大小以及改變光束之光腰大小等條件下,研究電子在光束中的運動軌跡,並進行分析與討論。
Vortex beams possess a unique helical phase structure, enabling them to carry orbital angular momentum. A Laguerre-Gaussian beam is a type of vortex beam that can carry orbital angular momentum. When such beams interact with matter, their optical angular momentum can be transferred to the matter, causing rotational or other dynamic behaviors. This characteristic makes vortex beams applicable in areas such as microparticle manipulation, optical communication, and astronomy.
In this study, COMSOL software was used to simulate a Laguerre-Gaussian beam. An electron beam was introduced at the center of this beam to investigate the effects of the Laguerre-Gaussian beam on the electrons under different conditions. The conditions varied in this study include changing the electric field intensity for different m-values, the initial kinetic energy of the electrons for different m-values, the size of the electron injection aperture, and the beam waist size. The trajectories of electrons in the beam were studied and analyzed under these varying conditions.
[1] Allen, L. and Beijersbergen, M. W. and Spreeuw, R. J. C. and Woerdman, J. P., Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes, Phys. Rev. A 45, 8185-8189 (1992).
[2] Lee, Andrew James, and Takashige Omatsu. ‘Direct Generation of Vortex Laser Beams and Their Non-Linear Wavelength Conversion’. Vortex Dynamics and Optical Vortices, InTech, 1 Mar. 2017. Crossref, doi:10.5772/66425.
[3] Shen, Y., Wang, X., Xie, Z. et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light Sci Appl 8, 90 (2019).
[4] Nye, J. F., and M. V. Berry. “Dislocations in Wave Trains.” Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, vol. 336, no. 1605, pp. 165–90, 1974.
[5] Bahaa E. A. Saleh; Malvin Carl Teich, Fundamentals of Photonics, Wiley, pp. 80-86, 2019.
[6] Charles A. Bennett, Principles of Physical Optics, Wiley, pp. 376-380, 2008.
[7] Charlotte Bond, Daniel Brown, Andreas Freise, Kenneth Strain, Interferometer Techniques for Gravitational-Wave Detection, arXiv, vol.13, article number1, (2010).
[8] Poynting John Henry, The wave motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly polarised light, Proc. R. Soc. Lond. A82560–567, (1909).
[9] Beth, Richard A, Mechanical Detection and Measurement of the Angular Momentum of Light, Phys. Rev., vol. 50, no. 2, pp. 115-125, (1936).
[10] 魏功祥,劉曉娟,劉云燕,付聖貴, 光的自旋和軌道角動量, Laser & Optoelectronics Progress, 51, 100004,pp1-8 (2014).
[11] Sponselli, Anna. “Study of the propagation and detection of the orbital angular momentum of light for astrophysical applications.” (2013).
[12] Yu, Xiantong, Wang, Xin, Li, Zhao, Zhao, Litao, Zhou, Feifan, Qu, Junle and Song, Jun. "Spin Hall effect of light based on a surface plasmonic platform" Nanophotonics, vol. 10, no. 12, pp. 3031-3048, 2021.
[13] Bliokh, Konstantin & Aiello, Andrea, Goos-Hänchen and Imbert-Fedorov beam shifts: An overview. Journal of Optics. 15. 4001-. 10.1088/2040-8978/15/1/014001, (2013).
[14] O'Neil, A. T. and MacVicar, I. and Allen, L. and Padgett, M. J., Intrinsic and Extrinsic Nature of the Orbital Angular Momentum of a Light Beam, Phys. Rev. Lett., 88 (5), pp. 053601, (2002).
[15] Padgett, Miles & Courtial, Johannes & Allen, Les. Light’s Orbital Angular Momentum. Physics Today. 35. 10.1063/1.1768672. (2004).
[16] Wang, D.; Huang, H.; Toyoda, H.; Liu, H. Topological Charge Detection Using Generalized Contour-Sum Method from Distorted Donut-Shaped Optical Vortex Beams: Experimental Comparison of Closed Path Determination Methods. Appl. Sci., 9, 3956, 2019.
[17] Jiang, Quanbo, Realization and optimization of plasmonic structures for directional control of light, (2016).
[18] M.W. Beijersbergen, L. Allen, H.E.L.O. van der Veen, J.P. Woerdman, Astigmatic laser mode converters and transfer of orbital angular momentum, Optics Communications, 96 (1-3), pp. 123-132, (1993).
[19] Alison M. Yao and Miles J. Padgett, "Orbital angular momentum: origins, behavior and applications," Adv. Opt. Photon. 3, 161-204 (2011).
[20] V. Bazhenov, M. S. Soskin, and M. V. Vasnetsov, “Screw dislocations in light wavefronts,” J. Mod. Opt. 39, 985–990 (1992).
[21] Yuan, X., Min, C., Novel Plasmonic Microscopy: Principle and Applications., Springer, Dordrecht, pp. 5-6, (2016).
[22] Porfirev, Aleksey & Kuchmizhak, Aleksandr & Gurbatov, Stanislav & Juodkazis, Saulius & Khonina, Svetlana & Kul'chin, Yurii., Phase singularities and optical vortices in photonics. Uspekhi Fizicheskih Nauk. 192., (2021)
[23] Marrucci, Lorenzo., The q-plate and its future. Journal of Nanophotonics. 7, pp. 078598, (2013).
[24] Marrucci, L. and Manzo, C. and Paparo, D., Optical Spin-to-Orbital Angular Momentum Conversion in Inhomogeneous Anisotropic Media, Phys. Rev. Lett., 96 (16), pp. 163905, (2006).
[25] Nanfang Yu and Patrice Genevet and Mikhail A. Kats and Francesco Aieta and Jean-Philippe Tetienne and Federico Capasso and Zeno Gaburro, Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction, Science, 10 (334), pp.333-337, (2011).
[26] Robert Charles Devlin, Antonio Ambrosio, Daniel Wintz, Stefano Luigi Oscurato, Alexander Yutong Zhu, Mohammadreza Khorasaninejad, Jaewon Oh, Pasqualino Maddalena, and Federico Capasso, "Spin-to-orbital angular momentum conversion in dielectric metasurfaces," Opt. Express 25, 377-393 (2017).
[27] H. Kogelnik and T. Li, "Laser Beams and Resonators," Appl. Opt. 5, 1550-1567 (1966)
[28] Anthony A. Tovar, "Production and propagation of cylindrically polarized Laguerre–Gaussian laser beams," J. Opt. Soc. Am. A 15, 2705-2711 (1998)
[29] Huebner, Kenneth H., et al. The finite element method for engineers. John Wiley & Sons, 2001.
[30] REDDY, Junuthula Narasimha. Introduction to the finite element method. McGraw-Hill Education, 2019.