| 研究生: |
柯志輝 Ko, Chih-Hui |
|---|---|
| 論文名稱: |
添加奈米碳管應用於捲軸式製程製備CISS太陽能電池之研究 Study on application of CNT in roll-to-roll preparation process of CISS solar cell |
| 指導教授: |
陳志勇
Chen, Chuh-Yung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 76 |
| 中文關鍵詞: | 奈米碳管 、銅銦硫硒化合物 、濕式研磨 、奈米分散 |
| 外文關鍵詞: | nanocarbon tubes, CISS, wet-milling, nano-dispersion |
| 相關次數: | 點閱:78 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
能源的需求日益遽增,太陽能以發電乾淨且具經濟潛力脫穎而出,其中以銅銦硫硒化合物薄膜電池最具發展潛能,銅銦硫硒化合物電池發展所遇到最大問題就是製程成本過大,導致發電成本無法降下。因此本研究著重於以低成本可大量化的捲軸式製程來製備,以電漿改質奈米碳管,藉碳管優良的導電性及一維結構誘導分離的自由電子導出。
本研究第一部分為燒結後研磨製程,燒結後的銅銦硫硒粉末以濕式研磨製作奈米分散液,將接枝馬來酸酐碳管分散於塗佈漿料中塗佈。在電子顯微鏡下可發現,改質過的碳管於薄膜內分散的很好;隨著添加碳管量從0wt%至5wt%,片電阻從1.1×107降至3.72×103Ω/sq,串聯電阻從5.05×105降至1.69×102Ω,另外,發現添加碳管有提升能隙的作用,載子濃度及遷移率也能得到不錯的提升。
第二部分為研磨後燒結製程,將銅銦硫硒薄膜以高溫環境進行燒結。在電子顯微鏡觀察下可發現,添加碳管可幫助晶粒成長,其中,以1wt%碳管添加量燒結溫度為650oC最佳,串聯電阻可降至105Ω。另外比較兩個系統,研磨後燒結系統的1wt%碳管添加量燒結溫度為650oC的電性優於燒結後研磨系統的3wt%碳管添加量。
第三部分為化學水浴沉積法製備硫化鎘薄膜,研究發現隨著沉積時間增加,其晶粒大小以及薄膜厚度也會隨之增加,晶粒增加會造成能隙的下降,經拉曼圖譜分析可知沉積時間15分鐘,其結晶度較佳且晶粒缺陷較少。另外,硫化鎘會以大顆粒方式沉積於銅銦硫硒顆粒,以小顆粒方式沉積於碳管上。
The demand of energy increases rapidly with years, and solar energy becomes outstanding due to its clear energy and potential economic value. Among all of solar cells, CISS solar cell is the most potential solar cell. The biggest problem is the expensive production cost of CISS solar cell. Therefore, this study uses plasma-treated CNTs to transport electron from CISS membrane prepared in the roll-to-roll process.
First of all, CISS nano-dispersion which is fabricated from CISS powders during the milling after sintering process was added with plasma-treated CNTs before coated as the CISS membrane. We observed good dispersion of CNTs in CISS membrane from SEM. With the content of CNTs increasing from 0% to 5%, the sheet resistance of CISS membrane decrease from 1.1×107 to 3.72×103Ω/sq, and the series resistance of CISS membrane decrease from 5.05×105 to 1.69×102Ω. In addition, we find the bandgap, carrier concentration and mobility elevate with the increasing of the content of CNTs .
Secondly, the CISS membrane sinters in the megathermal condition. We find CNTs can help the grain growth. When the CNTs amount is 1% and the sintering temperature is 650oC,the series resistance can be lowered to 105Ω. Besides, the electrical property of the sample with 1 wt% CNTs and sintering temperature 650oC is better than the one of milling after sintering system.
Thirdly, CdS membrane was prepared using chemical bath deposition. We found that CdS grain and membrane thickness becoming bigger with increasing deposition time results in the decrease of bandgap. While the deposition time is 15 minute, we found that the crystallinity is better and the grain defects is less from Raman spectra. And CdS grain deposits on the surface of CISS grain as large particles and on the CNTs as small particles.
1.William W. Hou , Brion Bob , Sheng-han Li , Yang Yang, Thin Solid Films 517 , 6853–6856, 2009.
2.K. Subbaramaiah, V. Sundara raja, Journal of Material Science Letters 10, 1344-1345, 1991.
3.Chih-Hao Lee, Fong-Gang Guo, and Chia-Chin Chu, Chinese Journal of Physics Vol. 50, No. 2, 2012.
4.Qian Qun, Zhang Cong-chun, Yang Chun-sheng, Ding Gui-fu, Transducer and Microsystem Technologies, Vol. 30, No. 4, 2011.
5.A.M. AbuShama, S. Johnston, T. Moriarty, G. Teeter, K.Ramanathan and R. Noufi, Prog. Photovoltaics 12, 39 , 2004.
6.S.M. Wasim, Sol. Cells 16,289 , 1986
7.S. H. Wei, S. B. Zhang, and A. Zunger, Appl. Phys. Letters, Vol. 72, Numb. 24
8.Billy J. Stanbery, Critical Reviews in Solid State and Materials Sciences, Vol. 27, No. 2, 73–117, 2002.
9.W. N. Shafarman, R. Klenk, and B. E. McCandless, J. Appl. Phys. Vol. 79, No. 9, 1 May 1996.
10.Qijie Guo, Grayson M. Ford, Rakesh Agrawal and Hugh W. Hillhouse, Progress in Photovoltaics, Research and Applications Prog. Photovolt, Vol. 21, Issue 1, 64-71, Jan. 2013.
11.M. Bodegard, L. Stolt, and J. Hedstrom, Proceedings of the 12th European Photovoltaic Solar Energy Conference, 1994.
12.W. Eisele, A. Ennaoul, P. Schubert-Bischoff, IEEE, 692-695, 2000.
13.G. Gordillo, G. Cediel, L.M. Caicedo, H. Infantc and J.Sandino, IEEE, 614-617, 2001.
14.K. Yoshino, T. Hata, T. Kakeno, H. Komaki, M. Yoneta, Y. Akaki,and T. Ikari, Phys. Stat. Sol. (c) 0, No. 2, 626– 630, 2003.
15.J. Chen, M.A.Hamon, H.Hu, Y.Chen, A.M.Rao, P.C.Eklund, and R.C.Haddon, Science 282, 95-98, 1998.
16.J. Chen, A.M. Rao, S.Lyuksyutov, M.E.Itkis, M.A.Hamon, H.Hu, R.W.Cohn, P.C.Eklund, D.T.Colbert, R.E.Smalley, and R.C.Haddon, The Journal of Physical Chemistry B.105,2525-2528, 2001.
17.Zhaowei Wang, Mark D. Shirley, Steven T. Meikle, Raymond L.D. Whitby, Sergey V. Mikhalovsky, Carbon 47, 73-79, 2009.
18.J.L. Bahr and J.M. Tour, Chemical-A European Journal. 10,812-817, 2004.
19.A.Hirsch, Angewandte Chemie International Edition. 41, 1853-1859, 2002.
20.C.A.Dyke and J.M.Tour, Chemistry-A European Journal. 10, 812-817, 2004.
21.V. N.Khabashesku, W.E. Billups, and J.L.Margrave, Accounts of Chemical Research.35, 1087-1095, 2002.
22.J.L.Bahr, J.Yang, D.V.Kosynkin, M.J.Bronikowski, R.E.Smalley, and J.M. Tour, Journal of the American Chemical Society. 123, 6536-6542, 2001.
23.A.Allaoui, S. Bai, H. M. Cheng, and J.B. Bai, Composites Science and Technology. 62, 1993-1998, 2002.
24.X.W.Jiang, Y.Z.Bin, and M.Matsuo, Polymer.46, 7418-7424, 2005.
25.F. Cardona, G.A.George, D.J.T.Hill,F.Rasoul, and J. Maeji, Macromolecules. 35, 355-364, 2001.
26.N.M.El-Sawy, Polymer International. 49, 533-538.
27.C.H. Tseng, C.C.Wang, and C.Y.Chen, Nanotechnology. 17, 5602-5612, 2006.
28.Jiaguo Yu, Jiajie Fan, Bei Cheng, Journal of Power Sources 196 , 7891– 7898, 2011.
29.Yen-Fong Chan, Cheng-Chien Wang, Bing-Hung Chen1 and Chuh-Yung Chen, Progress in Photovoltaics: Research and Applications Prog. Photovolt: Res. Appl. 21, 47–57, 2013.
30.Javier Arranz-Andre´s, Werner J. Blau, Carbon 46, 2067-2075, 2008.
31.Rong-Ho Lee, Jian-Lun Huang, Chun-Han Chi, J Polym Sci Part B: Polym Phys 51, 137–148, 2013.
32.Ishwor Khatri,,a Sudip Adhikari, Hare Ram Aryal, Tetsuo Soga, Takashi Jimbo, and Masayoshi Umeno, Applied Physics Letters 94, 2009.
33.Chun-Hao Tseng, Cheng-Chien Wang, and Chen-Yung Chen, J.Phys.Chem.B 110, 4020-4029, 2006.
34.Li Zhang, Fang-fangLiu, Feng-yanLi, QingHe, Bao-zhang Li, Chang-jian Li, Solar Energy Materials&Solar Cells 99, 356–361, 2012.
35.Chaozheng Wang, Chengjun Zhu, Tianwei Zhang, Jian Li, Vacuum 92, 7-12, 2013.
36.R. Kaigawa , T. Uesugi , T. Yoshida , S. Merdes , R. Klenk, Thin Solid Films 517, 2184–2186, 2009.
37.T.P. Vinod, Xing Jin, Jinkwon Kim, Materials Research Bulletin 46 , 340–344, 2011.
38.Wolfram Witte , Robert Kniese, Michael Powalla, Thin Solid Films 517, 867–869, 2008.
39.Tung-Po Hsieh, Chia-Chih Chuang, Chung-Shin Wu, Jen-Chuan Chang, Jhe-Wei Guo, Wei-Chien Chen, Solid-State Electronics 56, 175-178, 2011.
40.Li Wei, Sun Yun, Liu Wei, Li Feng Yan, and Zhou Lin, Chinese Physics, 1009-1963, 2006.
41.Chia-Hsiang Chen, Chia-Hao Hsu, Chih-Yu Chien, Yan-Huei Wu, and Chih-Huang Lai, Photovoltaic Specialists Conference (PVSC), 2687-2690, 2011.
42.Ju-Heon Yoon, Won-Mok Kim, Jong-Keuk Park, Young-Joon Baik, Tae-Yeon Seong and Eung-Hyun Jeong, Progress in Photovoltaics: Research and Applications, 2012.
43.Sutichai CHAISITSAK, Akira YAMADA1 and Makoto KONAGAI, Jpn. J. Appl. Phys. Vol. 41 (2002) pp. 507–513 Part 1, No. 2A, February 2002
44.Chung Ping Liu , Chuan Lung Chuang, Powder Technology 229, 78-83, 2012.
45.B.H.Tseng, 工業材料雜誌 285期.
46.Nawazish A. Khan , Sadaf Aziz, Journal of Alloys and Compounds 538, 183–188, 2012.
47.Markus Gloeckler, James R. Sites, and Wyatt K. Metzger, J. Appl. Phys. 98, 2005.
48.Markus Gloeckler and James R. Sites, Journal of Applied Physics 98, 2005.
49.P. P. Sahay, R. K. Nath, and S. Tewari, Cryst. Res. Technol. Vol. 42, No. 3, 275 – 280, 2007.
50.Ji-Hye Kwon, Joo-Seob Ahn, Heesun Yang, Current Applied Physics 13, 84-89, 2013.