簡易檢索 / 詳目顯示

研究生: 高庭偉
Gao, Ting-Wei
論文名稱: 基於數位孿生之模型預測控制應用於抑制馬達轉矩飽和
Digital Twin Based Model Predictive Control for Resolving Motor Torque Saturation
指導教授: 蔡明祺
Tsai, Mi-Ching
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 62
中文關鍵詞: 數位孿生模型預測控制轉矩飽和反積分終結
外文關鍵詞: Digital Twin, Model Predictive Control, Torque Saturation, Anti-Windup
相關次數: 點閱:76下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要目的是針對伺服馬達控制實務上會發生的轉矩飽和問題,提出一種基於數位孿生之模型預測控制方法。於伺服馬達轉速控制架構中,比例-積分控制器因結構簡單及參數設計容易被廣泛使用,當驅動器在有電流保護限制下運轉時,轉速響應會比設計的理想情況慢,造成積分器累積過大誤差值,導致轉矩命令易超過限制值而飽和,產生積分終結問題,而導致轉速響應不如預期。本研究提出基於數位孿生之模型預測控制,藉由實際控制系統的數位分身,預測系統未來的轉矩命令,始能提前得知飽和發生時機,並根據預測的轉矩命令,使用模型預測控制法則計算最佳的補償值,能於飽和前預先降低積分器累積值,達到抑制轉矩飽和之目的。所提之方法除了能抑制轉矩飽和外,相比於一般反積分終結方法易有較佳轉矩命令及轉速響應。本研究分別採用硬體在環迴路及真實伺服系統進行實驗,以驗證所提之控制策略的可行性,並比較其能有效改善轉矩命令及轉速響應。

    In motor speed control, the proportional-integral controller is widely used because of its simple structure and design process. However, regarding the current limitations of a practical motor driver, it often leads to a large accumulation in the integrator, which causes the serious torque saturation, namely, the integral windup, and undoubtedly degrades the control performance. To improve the torque saturation, this paper proposes a digital twin based model predictive control (DT-MPC) strategy aiming at the prediction of the future torque command and further the preemptive compensation of the integrator. Compared with the conventional anti-windup methods, which are passive strategies activated by feedback after encountering the torque saturation, the DT-MPC can reduce the redundant accumulation in advance by a feedforward compensation; therefore, the system has the better performance of the torque command and speed response via the DT-MPC. To verify the control performance of the proposed strategy, an experimental platform consisted of a real motor driver with a permanent magnet synchronous motor (PMSM) was adopted.

    摘要 I 致謝 XXII 目錄 XXIII 表目錄 XXVI 圖目錄 XXVII 符號表 XXX 第一章 緒論 -1 1.1 研究背景與動機 -1 1.2 文獻回顧與研究目的 -2 1.3 本文架構介紹 -4 第二章 永磁同步馬達控制架構 -5 2.1 FOC基本控制原理 -5 2.1.1 永磁同步馬達數學模型 -5 2.1.2 磁場導向控制架構 -9 2.1.3 電流及速度控制器設計 -10 2.2 轉矩限制影響 -12 2.2.1 轉矩限制之模擬結果 -12 2.2.2 反積分終結(Anti-Windup) -14 第三章 基於數位孿生之模型預測控制 -17 3.1 數位孿生建立方法 -17 3.1.1 數位孿生介紹與目的 -17 3.1.2 等效模型估測誤差收斂架構 -19 3.1.3 建立數位孿生 -26 3.2 模型預測控制(MPC)應用 -28 3.2.1 MPC計算方法介紹 -28 3.2.2 DT-MPC控制流程 -32 3.2.3 基於數位孿生之MPC應用設計 -35 第四章 HIL和實體馬達實驗 -41 4.1 使用的硬體及軟體設備 -41 4.2 硬體在線迴路HIL實驗 -42 4.3 實際驅動器及馬達實驗 -52 第五章 結論及未來建議 -59 5.1 結論 -59 5.2 未來研究建議 -59 參考文獻 -60

    [1] M. Abassi, A. Khlaief, O. Saadaoui, A. Chaari and M. Boussak, "Performance Analysis of FOC and DTC for PMSM Drives Using SVPWM Technique," 2015 16th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA), pp. 228-233, 2015.
    [2] 吳懿軒,「現實機台因電流限制所造成積分飽和之控制方法分析與比較」,馬達電子報第739期,成大馬達科技研究中心,2017。
    [3] A. Visioli, "Modified Anti-Windup Scheme for PID Controllers," IEE Proceedings - Control Theory and Applications, vol. 150, pp. 49-54, 2003.
    [4] G. S. John and A. T. Vijayan, "Anti-Windup PI Controller for Speed Control of Brushless DC Motor," 2017 IEEE International Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI), pp. 1068-1073, 2017.
    [5] R. H. Guerra, R. Quiza, A. Villalonga, J. Arenas and F. Castaño, "Digital Twin-Based Optimization for Ultraprecision Motion Systems With Backlash and Friction," IEEE Access, vol. 7, pp. 93462-93472, 2019.
    [6] Y. Zhu, G. Xu, J. Yin and Y. Liu, "Speed Control of Permanent Magnet Synchronous Motor Drives Based on Model Predictive Control," 2017 International Conference on Computer Technology, Electronics and Communication (ICCTEC), pp. 908-913, 2017.
    [7] 吳俊儒,「抑制永磁同步馬達頓轉扭矩之位置依據型重複扭矩觀測器設計」,碩士論文,國立成功大學機械工程研究所,2018。
    [8] 洪啟峯,「永磁同步馬達的設計」,碩士論文,國立宜蘭大學機械與機電工程學系研究所,2014。
    [9] 劉昌煥,「交流電機控制」,東華書局,民國95年9月四版。
    [10] 劉子瑜,「基於弦波電流驅動於永磁同步馬達電流迴路控制之研究」,碩士論文,國立成功大學電機工程學系,2009。
    [11] http://www.shinwe.com.tw/wpcontent/uploads/2018/06/ASDA-A2.pdf.
    [12] http://www.feu.edu.tw/edu/mse/web/%E5%B0%88%E9%A1%8C%E6%
    BC%94%E8%AC%9B/%E4%BA%A4%E6%B5%81%E4%BC%BA%E6%9C%8D%E5%8E%9F%E7%90%86%E7%B0%A1%E4%BB%8B.pdf?fbclid=IwAR1w-iMaUJABadfbVxxLKRFIpwsPa0nl7tcCOyj-aArDxJNOJW_LG3fh
    REE.
    [13] https://www.bnext.com.tw/article/54895/digital-twin-will-reverse-manufacturing.
    [14] https://en.wikipedia.org/wiki/Mathematical_optimization
    [15] Wu, Chun-Ju, Mi-Ching Tsai and Lon-Jay Cheng, "Design and Implementation of Position-Based Repetitive Control Torque Observer for Cogging Torque Compensation in PMSM," Applied Sciences, vol. 10(1), 96, 2020.
    [16] Gene F. Franklin, J. David Powell and Michael Workman, Digital Control of Dynamic Systems, Canada: Addison-Wesley, 1997.
    [17] K. Sakata and H. Fujimoto, "Perfect Tracking Control of Servo Motor Based on Precise Model with PWM Hold and Current Loop," 2007 Power Conversion Conference - Nagoya, pp. 1612-1617, 2007.
    [18] 魏漢樹,「適應性多取樣頻率直流伺服馬達數位控制器之設計與實現」,碩士論文,國立臺北科技大學自動化科技研究所,2007。
    [19] Lilit Kovudhikulrungsri and Takafumi Koseki, "Performance Improvement of a Linear Encoder by Multirate Sampling Observer," Proceedings of the 4th International Symposium on Linear Drives for Industry Applications, pp. 509-512, 2003.
    [20] 盧俊男,「模型預測控制設計及於雙線姓伺服系統之應用」,碩士論文,國立成功大學機械工程學系,2008。
    [21] K. W. Lim and K. V. Ling, "Generalized predictive control of a heat exchanger," in IEEE Control Systems Magazine, vol. 9, no. 6, pp. 9-12, 1989.
    [22] https://www.gathertech.net/mr2.

    無法下載圖示 校內:2025-07-10公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE