| 研究生: |
李冠庭 Li, Kuan-Ting |
|---|---|
| 論文名稱: |
穩態電漿介電質放電技術應用於三角翼上之性能比較 Study of Steady Mode Dielectric Barrier Discharge Plasma Actuators on a Delta Wing |
| 指導教授: |
蕭飛賓
Hsiao, Fei-Bin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 69 |
| 中文關鍵詞: | 電漿致動器 、介電質放電 、離子風 、側滑角 、三角翼 、側向力係數 、滾轉力矩係數 、偏轉力矩係數 |
| 外文關鍵詞: | Plasma Actuator, Ionic Wind, Delta wing, Dielectric Barrier Discharge, Side Force Coefficient, Roll Moment Coefficient, Yaw Moment Coefficient |
| 相關次數: | 點閱:183 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究將利用風洞實驗之方法觀察電漿致動器作用於三角翼翼前緣空氣動力特性之變化。其空氣動力特性的不同,為透過控制電漿致動器的高壓電場可將致動器周圍的空氣解離,同時所誘導出的離子風進而改變邊界層的速度分布。
本研究三角翼於風洞內所量測的角度可分為正對流場與側滑角二項。首先在側滑角為-5˚、-2.5˚、+2.5˚與+5˚時利用力平衡儀於雷諾數70000、115000與140000量測三角翼之側向力係數、滾轉力矩係數與偏轉力矩係數。最後再開啟電漿致動器,探討三角翼大於失速攻角後流場穩定之現象。
結果顯示穩態電漿致動器開啟後在低雷諾數的情況下,對於三角翼之滾轉力矩以及三角翼穩定度皆有一定之影響力,並且,當實驗加入側滑角之條件後,結果亦然。
The aim of this study is to investigate the aerodynamic performance of a delta wing using the airflow control method. The wind tunnel experiment is used to obtain the aerodynamic characteristics as a surface plasma actuator, set on the leading edge of a delta wing. Dielectric barrier dischargers are used to ionize locally the air and to produce the ionic wind that will modify the velocity profiles in the boundary layer.
The experiments were divided into three parts. First, the aerodynamic performance is measured at the sideslip angle of 0° and the second is obtained in the sideslip angles of -5˚, -2.5˚, +2.5˚ and +5˚. Finally, the investigation into the stability of delta wing was carried out while turn on the plasma actuator. All cases in the wind tunnel experiment were performed at the low Reynolds numbers of 7×104 to 1.4×105 to obtain the values of non-dimensional parameters such as side force coefficient, roll moment coefficient, and yaw moment coefficient.
These results indicated that the proposed steady mode dielectric barrier discharge plasma actuators can effectively control the Delta wing in the roll motion and stability even with sideslip angles along the freestream in low Reynolds number.
[1] M. Gad-El-Hak, “Flow Control,” Cambridge: Cambridge University Press, 2000
[2] E. Moreau, “Airflow Control by Non-thermal Plasma Actuators,” Journal of Physics,Vol.40, pp.605-636, 2007
[3] F. Rogier, J. C. Matéo-Vélez and GéraldineQuinio, “Numerical Modeling of DC Discharges in Air Flows,” Conference on Computational Physics, 2006
[4] A. M. Mitchell, J. Delery, “Research into Vortex Breakdown Control,” Progress in Aerospace Sciences Vol.37 No.4, pp.385-418, 2001
[5] I. Gursul, “Review of Unsteady Vortex Flows over Slender DeltaWings,” Journal of Aircraft, Vol.42 No.2, pp.299-319, 2005
[6] J. D’Adamo, G. Artana, E. Moreau, and G. Touchard, “Control of the Airflow Close to a Flat Plate with Electrohydrodynamic Actuators,” ASME Paper No.2002-31041, 2002
[7] R. Sosa, and G. Artana, “Steady Control of Laminar Separation over Airfoils with Plasma Sheet Actuators,” Journal of Electrostatics, Vol. 64, pp.604-610, 2006
[8] F. Soetomo, “The Influence of High Voltage Discharge on Flat Plate Drag at Low Reynolds Number Air Flow,” MS Thesis, Iowa State University, 1992
[9] H. R. Velkoff and J. Ketcham, “Effect of an Electrostatic Field on Boundary Layer Transition,” AIAA Journal, Vol.16, pp.1381–1383, 1968
[10] G. M. Colver and S. E. Khabiry, “Modeling of DC Corona Discharge Along an Electrically Conductive Flat Plate with Gas Flow,” IEEE Trans. Ind. Appl., Vol. 35, NO. 2, pp.387-394, 1999
[11] L. Leger, E. Moreau, G. Artana and G. Touchard, “Influence of a DC Corona Discharge on The Airflow Along an Inclined Flat Plate,” Journal of Electrostatics , Vol. 51-52, pp.300-306, 2001
[12] E.Moreau, L. Leger, and G. Touchard, “Effect of a DC Surface-Corona Discharge on a Flat Plate Boundary Layer for Air Flow Velocity up to 25m/s,” Journal of Electrostatics, Vol. 64, pp.215-225, 2006
[13] L. Leger, E. Moreau, and G. Touchard, “Effect of a DC Corona Electrical Discharge on the Airflow Along a Flat Plate,” IEEE Trans. Ind. Appl., Vol. 38 pp.1478-1485, 2002
[14] C. Louste, E. Moreau, and G. Touchard, “DC Corona Surface Discharge Along an Insulating Flat Plate in Air: Experimental Results,” Annual Report Conference on Electrical Insulation and Dielectric Phenomena, pp.822-826, 2002
[15] 李卓翰,”電漿致動器於三角翼上之應用”,國立成功大學航太所,2009
[16] A. Fridman, A. Chirokov and A. Gutsol, “Non-thermal Atmospheric Pressure Discharge,” Journal of Physics D: Appl. Phys., Vol.38, pp.1-24, 2005
[17] S. Yokoyama, M. Kogoma, T. Morikawi and S. Okazaki, “The Mechanisms of the Stabilized Glow Plasma at Atmospheric Pressure,” Journal of Physics, D: Appl. Phys., pp.1125-1128, 1990
[18] F. Massines, A. Rabehi, P. Decomps, R. B. Gadri, P. S´egur and C. Mayoux, “Experimental and Theoretical Study of a Glow Discharge at Atmospheric Pressure Controlled by Dielectric Barrier,” Journal of Physics, D: Appl. Phys., Vol.83, pp.2950–2957, 1998
[19] J. R. Roth and D. M. Sherman, “Boundary Layer Flow Control With a One Atmosphere Uniform Glow Discharge Surface Plasma,” AIAA 36th Aerospace Sciences Meeting and Exhibit, 1998
[20] J. R. Roth, “Subsonic Plasma Aerodynamics for Flight Control of Aircraft,” 2006
[21] C. L. Enloe,T. E. McLaughlin, R. D. VanDyken, and K. D. Kachner, “Mechanisms and Responses of a Single Dielectric Barrier Plasma Actuator: Plasma Morphology,” AIAA Journal, Vol.42, No.3, pp.589-594, 2004
[22] M. L. Postand T. C. Corke, “Separation Control on High Angle of Attack Airfoil Using Plasma Actuators,” AIAA Journal, Vol.42, No.11, pp.2177-2184, 2004
[23] T. C. Corke, M. L. Post, and D. M. Orlov, “Single-Dielectric Barrier Discharge Plasma Enhanced Aerodynamics: Concepts, Optimization, and Applications,” Journal of Propulsion and Power, Vol.24, pp.935-945, 2008
[24] J. C. Laurentie, J. Jolibois, and E. Moreau, “Surface Dielectric Barrier Discharge: Effect of Encapsulation of the Grounded Electrode on the Electromechanical Characteristics of the Plasma Actuator”, Journal of Electrostatics,Vol. 67, pp.93–98, 2009
[25] 陳信安,”電漿介電質放電技術應用於三角翼空氣動力特性之研究”,國立成功大學航太所,2010
[26] Martiqua L. Post, Thomas C. Corke, “Separation Control Using Plasma Actuators: Dynamic Stall Vortex Control on Oscillating Airfoil,” AIAA Journal, Vol. 44, No. 12, 2006
[27] D. Greenblatt, C. Y. Schüle, D. Romann, and C. O. Paschereit, “Dielectric Barrier Discharge Flow Control at Very Low Flight Reynolds Numbers,” AIAA Journal, Vol. 46, No. 6, 2008
[28] D. Greenblatt, Y. Kastantin, C. N. Nayeri, and C. O. Paschereit“Delta-Wing Flow Control Using Dielectric Barrier Discharge Actuators,” AIAA Journal, Vol. 46, No. 6, 2008
[29] 陳得明,”脈衝電漿介電質放電技術應用於三角翼之研究”,國立成功大學航太所,2011
[30] 薛懷甯,"電漿致動器最佳化及其於三角翼上應用之研究",國立成功大學航太所,2012
[31] A. Santhanakrishnan and J. D. Jacob, “On Plasma Synthetic Jet Actuators,” 44th AIAA Aerospace Sciences Meeting and Exhibit, 2006
[32] J. Huang, T. C. Corke, and F. O. Thomas, “Unsteady Plasma Actuators for Separation Control of Low-Pressure Turbine Blades,” AIAA Journal, Vol.44 No.7, pp.1477-1487, 2006
[33] A. Labergue, E. Moreau, N. Zouzou and G. Touchard, “Separation Control Using Plasma Actuators: Application to a Free Turbulent Jet,” Journal of Physics D: Appl. Phys.,Vol. 40, pp.674–684, 2007
[34] D. Bivolaru, S. P. Kuo, “Aerodynamic Modification of Supersonic Flow around Truncated Cone Using Pulsed Electrical Discharges,” AIAA Journal, Vol.43 No.7, pp.1482-1489, 2005
[35] P. Q. Elias, B. Chanetz, S. Larigaldie, and D. Packan, “Study of the Effect of Glow Discharges near a M=3 Bow Shock,” AIAA Journal, Vol.45 No.9, pp.2237-2245, 2007
[36] P. Q. Elias, B. Chanetz, S. Larigaldie, D. Packan and C. O. Laux, “Mach3 Shock Wave Unsteadiness Alleviation Using a Negative Corona Discharge,” AIAA Journal, Vol.46 No.8, pp.2042-2049, 2008
[37] R. C. Nelson, T. C. Corke, C. He, H. Othman, T. Matsuno, M. P. Patel, and T. T. Ng, “Modification of the Flow Structure over a UAV Wing for Roll Control,” AIAA paper 45th Aerospace Sciences Meeting, 2007
[38] A. M. Mitchell, P. Molton, D. Barberis, and J. Delery, “Vortical Substructures in the Shear Layers Forming Leading Edge Vortices,” AIAA paper 2001-31012, 2001
[39] Y. Guy, J. A. Morrow, and T. E. Mclaughlin, “Velocity Measurements on a Delta Wing with Periodic Blowing and Suction,” AIAA paper 2000-0550,2000
[40] S. G. Siegel, and J. A. Morrow, “PIV Measurements on a Delta Wing with Periodic Blowing and Suction,” AIAA paper 2001-2436,2001
[41] J. X. Zhan, and J. J. Wang, “Experimental Study on Gurney Flap and Apex Flap on a DeltaWing,” Journal of Aircraft, Vol. 41, pp.1379-1383, 2004
[42] Flint O. Thomas, Thomas C. Corke, Muhammad Iqbal, Alexey Kozlov, David Schatzman, “Optimization of Dielectric Barrier Discharge Plasma Actuators
for Active Aerodynamic Flow Control,” AIAA Journal, Vol. 47, No. 9, 2009
[43] M. Cheong, A. Greig, B. Gibson, M. Arjomandi, “An Investigation into the Effect of Electric Field on the Performanceof Dielectric Barrier Discharge Plasma Actuators,”Experimental Thermal and Fluid Science, 2011
[44] A.D. Budovsky, B.Yu. Zanin, I.D. Zverkov, V.V. Kozlov, A.A. Maslov, B.V. Postnikov, A.A. Sidorenko, “Plasma Control of Vortex Flow on Delta-Wing at High Angles of Attack,”International Conference on Methods of Aerophysical Research, 2008
[45] P. F. Zhang, J. J. Wang, L. H. Feng, and G. B. Wang, “Experimental Study of Plasma FlowControl on Highly Swept Delta Wing,”AIAA Journal, Vol. 48, No. 1, January 2010